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Blockchain technology has been posited as a solution for various applications in the financial

sphere, such as payment systems [1], securities trading [2], post-trade settlement [3], regulation [4],

consulting and auditing [5, 6], etc. Furthermore, blockchains have been proposed for non-financial

use cases including public registries [7], copyright [8] and provenance [9, 10]. Pragmatically, the

reason of blockchain popularity may be simple: financial services and other applications are in

a need of modernization, and blockchain technology seems to provide a solution [11]. Thus, the

crucial question impacting the adoption of blockchain technology is whether the technology provides

substantial benefits compared to alternate digital solutions.

Blockchains, as envisioned by Satoshi Nakamoto [12], combine the characteristics of three distinct

technologies:

• Byzantine fault-tolerant systems

• Digital timestamping services

• Currency ledgers using cryptographic primitives

On its own, each of these technologies were studied well before Nakamoto’s publication. Byzantine

fault tolerance (i.e., tolerance to arbitrarymalicious behavior, including attempts to thwart the system

by an active adversary) was defined in 1980s [13, 14]; the practical Byzantine fault-tolerant (PBFT)

algorithm [15], which is now frequently used as a building block for private blockchains, dates

back to 1999. Digital timestamping – i.e., notarizing digital documents, associating these documents

with reliable timestamps and establishing ordering among all notarized documents – was explored

starting in 1990s [16, 17]. David Chaum’s DigiCash [18] – an electronic ledger extensively relying on

cryptography primitives – was founded in 1990 (and went bankrupt in 1998). It is the combination of

timestamping, replicated log and cryptography that made Nakamoto’s blockchain design innovative.

The digital timestamping feature of blockchain technology is sometimes overlooked in blockchain

studies in favor of the other two aforementioned characteristics. In our opinion, this may lead to a

distorted understanding of blockchain technology. If a blockchain is viewed only as a distributed fault-

tolerant system with embedded business logic (such as a currency), it may seem that all blockchain

users are equal; once we switch to the timestamping perspective, it becomes clear that this is not

necessarily the case. Namely, there are entities that determine the state of the blockchain (e.g.,

a bank or a consortium of banks in a financial ledger; the registry agency in a public registry;

insurance company or companies in an insurance network) and external users who do not participate

in consensus, but would like to be sure that the blockchain is operated correctly (e.g., bank clients;

immutable property owners; policyholders). An important category of external users are auditors

and regulators.

One of the core features expected from timestamping services is accountability [19]. Accountability

means that every user of a timestamping service can reliably verify that the service operates in the

intended way (e.g., information provided by the service agrees with the information it provided to

other users). If verification fails, the user has a proof of service’s malicious behavior, which could be
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used to hold the service accountable. Accountability may be lost if external parties are excluded from

consideration when constructing the blockchain.

Feasibility of external audits is one of attractive characteristics of permissionless cryptocurrency

blockchains such as Bitcoin. Bitcoin would not likely have gained as substantial popularity if it

required each user to operate a full Bitcoin node to ensure the system operates correctly. In practice,

the Bitcoin ecosystem allows each user to choose a fitting trust model to perform transactions: using

a full node, a lightweight (SPV) node, a non-custodial multisignature wallet or a trusted third party.

User trust in the automatically enforced properties of a blockchain, instead of in the identities of its

processors (and by extension, trust in formally specified properties of services built on top of the

blockchain instead of identities of the service providers) could be beneficial for both permissioned

and non-permissioned blockchains. In other words, increased user trust could create an environment

for even more third party service development and integration of blockchain technology.

Another useful feature provided by blockchain technology is non-repudiation [20], i.e., the ability

to definitively verify authenticity of statements recorded on the blockchain. Non-repudiation could

be accomplished with the help of digital signatures combined with public key infrastructure (PKI) [21]

and reliable timestamping. The latter is important to prevent anyone (even the colluding blockchain

maintainers) from backdating statements and to make retrospective authenticity verification not

critically reliant on security of the utilized public key cryptosystem(s).

Many proposed blockchain applications (currency ledgers, public registries, insurance, copyright,

supply chains, etc.) could benefit from built-in external auditability and non-repudiation, as they are

legally required or at least expected by application users. External auditability of blockchains could

make them a preferable means of computerization of such applications compared to alternatives.

Furthermore, external auditability aligns with “Web 2.0,” i.e., the general shift from service-centric to

user-centric applications (cf. the notion of self-sovereign identity [22, 23]). The ability for any client

to perform a partial or complete audit of the system could be viewed as a competitive advantage

in the emerging user-centric world. Thus, auditability and accountability capabilities of blockchains

constitute a promising topic for research.

Previous research. Accountability is one of core topics of the research on digital timestamping (see,

e.g., [19]). The Bitcoin white paper mentions reliable timestamping as one of the design goals of the

system (Sections 3, 4 of [12]). Interestingly, the reference list in the white paper contains 4 works on

timestamping – more than on distributed computations and e-cash cryptography combined.

The topic of accountability was brought up in blockchain research with relation to the “nothing

at stake” problem encountered by early proof of stake blockchains [24]; in fact, the problem could

be viewed as a typical accountability failure. Later research on proof of stake codified the problems

with accountability with the notion of weak subjectivity [25]. Security deposits were introduced into

proof of stake to provide economic accountability of blockchain participants (see, e.g., Slasher [26],

Tendermint [27] and Casper [28] consensus algorithms).
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Private blockchain concepts, mostly based on the PBFT family of consensus algorithms, frequently

declare auditability by external parties (i.e., accountability), often by introducing a special role of

auditing nodes in the blockchain network (see, e.g., IBM Open Blockchain [29]). However, research

analyzing andquantifying blockchain accountability is somewhat lacking (see [30] as one of examples).

As we show in this paper, Byzantine fault-tolerant design and presence of auditing nodes in the system

may not be enough to provide meaningful accountability for all applications.

Blockchain anchoring, which we consider in this paper as one of accountability measures, is

similar to the notion of attested append-only memory (A2M) [31] in providing additional security for

distributed consensus. Using the Bitcoin Blockchain as a means to provide accountability with the

help of anchoring is explored by Proof of Existence [32], Factom [33], Tierion [34], Openchain [35],

ChainDB [36], etc. Our description of anchoring a blockchain on the Bitcoin Blockchain in Section 3.3

resembles that used in Factom and Openchain with the exception of the structure and authorization

of anchoring transactions.

We have briefly described anchoring and proof of work as means to achieve accountability in our

white paper [37]. This work could be viewed as the extension and elaboration of that research.

Our contribution. We consider auditing capabilities, accountability and non-repudiation for state

machine systems and define blockchains as a subtype of such systems that fulfill these properties. This

conclusion is derived from the semantics of the word blockchain, as well as the design goals and linked

timestamping roots of the Bitcoin Blockchain. Thus, our view of blockchains is narrower compared

to defining a blockchain as an atomic broadcast ([38]; a similar or even looser definition is commonly

used in non-specialized press). On the other hand, we do not limit accountability in blockchains to

economic accountability provided by proof-of-work mining of native blockchain tokens.

As means to implement auditability, accountability and non-repudiation, we describe blockchain

receipts (aka SPV proofs) and blockchain anchoring. We also examine proof of work in permission-

less blockchains from the point of view of accountability. Both blockchain receipts and blockchain

anchoring are well-known technologies; our contribution is in connecting them to accountability

and, for blockchain anchoring, in reviewing implementations that would not compromise security

assumptions on the system.

Contents. The rest of the paper is organized as follows. We describe auditability and accountability

for state machine systems in Section 1. In Section 2, we reason that replicated logs without a proper

setup are not accountable and that blockchain design specifically addresses this issue; we also study

blockchain receipts as basic accountability measures. Section 3 describes traditional anchoring, proof

of work and blockchain anchoring as means to increase accountability of blockchains. Section 4 is

dedicated to an overview of alternative approaches to accountability and auditability. An analysis of

accountability of alternative consensus algorithms used in cryptocurrencies is given in Appendix A.

Finally, Appendix B offers a framework for estimating attack costs on blockchain anchoring.
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1 Basic Definitions

We start by giving basic definitions within the problem domain.

Definition 1. A state machine system [39] is a software product comprising:

• Data storage reflecting the system state in a certain domain (e.g., users’ balances in a ledger)

• Transactions, which are the atomic, linearly ordered, sufficiently small changes to the system

state (e.g., value issuance or transfer in a ledger)

• Consistency rules allowing to assess whether the system operates correctly, i.e., according

to expectations placed on it by its users. Consistency rules determine whether a particular

transaction is correct with respect to the current system state. Each transaction can be either

correct or incorrect, but not both or something in between. Incorrect transactions must not be

enacted; any correct transaction can be enacted without compromising the system

In essence, we assume that changes to a state machine system could be decomposed into small

pieces (transactions) applied in a sequential order, and the problem of ensuring the correctness of the

system could be reduced to the computational task of ensuring the correctness of transactions. We also

assume that consistency rules are objective and deterministic, thus can be automated. As an example

of consistency rules, there are usually rules regarding system security [40] (e.g., all unauthorized

transactions are incorrect).

Definition 2. Auditing is a systematic and independent examination of a state machine system with

the goal of determining whether its operation is correct (according to the consistency rules) and was

continuously correct in the past.

We use the common definition of auditing [41] and confine it to state machine systems. Therefore,

we assume that such computer systems in general can and should reflect objective reality; we reject

a nihilistic point of view that computer systems cannot automate auditing process, as the evolution

of computer technology proves the opposite. In this regard, we do not see substantial differences

between state machine systems and other data sources subjectable to auditing.

The goal of auditing is to prevent or minimize system corruption, i.e., a failure of some enacted

transactions to agree with consistency rules. This goal could be achieved in several ways:

• Make system corruption technically impossible (tamper proofness)

• Make system corruption prohibitively economically costly for anyone to try (tamper resistance).

Costs may come from various sources:

– System corruption may require bribing / corrupting many independent parties

– System corruption may require solving a difficult computational problem requiring non-

trivial resources at attacker’s disposal
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• Make system corruption easily and immediately detectable and the evidence of it independently

verifiable and irrefutable (tamper evidence)

• Make system corruption irrefutably attributable to specific persons or organizations

Examples of state machine systems requiring auditing are financial ledgers (e.g., currency ledgers

used in banking; securities ledgers operated by stock exchanges) and public state registries. There are

three main user roles in such a system: maintainers, auditors and clients (Table 1). The first two roles

are self-explanatory; we define clients as entities who initiate and authorize (whether directly or with

the help of trusted intermediaries) changes to the system state. The user roles may overlap; e.g., in a

permissionless blockchain any client can act as an auditor and/or as a maintainer.

Table 1: Core notions of auditable systems in various domains

Property Domain

Financial ledger Public registry Provenance

Maintainer Bank(s), exchange(s) Government agency Goods manufacturer(s) or

specialized blockchain

provider(s)

Auditors Internal auditors,

regulators, law

enforcement

Government-appointed

auditors; NGOs

Customers

Clients Bank clients; securities

owners

Citizens (e.g., immovable

property owners,

copyright owners)

Goods manufacturer(s)

System state Balances of all clients;

state of contracts between

clients

State of all registered

property

Registered goods

Transactions Value issuance and

transfer

Ownership change,

leasing

Goods issuance and

tracking

Examples of

consistency rules

The same asset does not

belong to two accounts

(i.e., no double-spending)

A property cannot be sold

if its owner already leases

it

Goods with the same tag

cannot be sold twice

1.1 Internal and External Audits

We assume that a state machine system could be subjected to two kinds of threats.

Definition 3. Local threat is a threat corrupting a minor part of the system, so that operation of the

major part remains correct. System-wide threat is a threat corrupting the system in whole.

An example of a local threat would be system components being corrupted by an external hacker

or a rogue employee. An example of a system-wide threat is corruption of the bank ledger by the

bank’s executives in an attempt to hide its insolvency. Note that threats may be caused by operational
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errors committed by persons interacting with the system, and not necessarily by internal or external

malicious activity.

By discerning local and system-wide threats, we assume that the system can provide for a certain

degree of redundancy so that each transaction is checked by multiple independent verifiers; local

threats can corrupt only a certain minority of these verifiers. This assumption is not necessarily the

case: in some centralized systems, any local threat would realistically escalate to a system-wide threat.

Assumption 1. Certain state machine systems necessitate continuous auditing of their operation both

by internal and external parties:

• The goal of internal audits is to ensure protection against local threats

• The goal of external audits is to ensure that the system operates according to expectations of

its clients and to the public interests, i.e., provide protection against system-wide threats

The notion of accountability is closely related to the feasibility of external audits. Accountability

essentially means that external users (auditors and, ideally, clients) have the means to timely detect

system corruption attempted bymaintainers, attribute such activity and provide unambiguous proofs

of it that could be used publicly, e.g., in a court of law. Correspondingly, we will use terms external

auditability and accountability interchangeably.

By confining ourselves to Assumption 1, we assume that:

Assumption 2. The statemachine system is anti-discretionary [42], i.e., there are objective consistency

rules governing its operation which cannot be changed at will by the system maintainers.

Assumption 2 is true for regulated systems (public registries, banks, exchanges, etc.), in which

case there are generally parties interested in the system auditability who do not maintain the system.

For example, citizens may be interested in having an auditable immovable property registry without

needing to participate in the registry operation (which may be unwieldy for an ordinary citizen); the

same is true for bank or exchange clients. Another application area of Assumption 2 is peer-to-peer

financial services (e.g., P2P lending and insurance). Naturally, cryptocurrencies are anti-discretionary

as well; indeed, the goal of cryptocurrencies is to completely abstract from the identities of system

maintainers (so called trustless-ness property).

At the same time, Assumption 2 does not hold for many ledger-like or registry-like systems (e.g.,

an in-game currency ledger), in which external audits are superfluous or illogical because of trusted

parties being inherent to the system design. In some other cases (e.g., a supply chain ledger or an inter-

bank settlement system), the initial requirements on the systemmay not satisfy Assumption 2 as these

systemsmay not require external auditing from the start. However, these systemsmay eventually fall

into the scope of Assumption 2 in the process of their evolution:

• It would be quite natural to use supply chain ledgers for determining taxation. In this case,

ledger maintainers might collude to evade taxation
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• Inter-bank settlement system could be fine-grained and include client accounts instead of bank

accounts, thereby attracting clients’ interest in the system auditability

• Inter-bank settlement system could be used by the regulator to assess systemic risks for the

participating banks

An approach to automate internal audits by making a system fault-tolerant may be ineffective in

the case of external auditing. Here is why:

Assumption 3. Maintainers of a state machine system may have a common interest to mislead an

external auditor.

This assumption is quite sound if a system is operated by a single entity even if the maintained

system is distributed. For example, a distributed bank ledger with separate nodes corresponding to

regional departments could be secure against a rogue employee or a hacker (as it is reasonable to

assume that the attacker cannot corrupt more than a couple of nodes); however, it could not be secure

against the bank’s board of directors conspiring tomislead the regulator (as in this case, all bank nodes

may be rigged). Consortium systems may be prone to this kind of attacks too, as evidenced by practice

[43, 44, 45, 46] and the following weak argument: if maintainers have reached the agreement to create

and maintain a shared system, they may as well reach an agreement to rig it.

The theoretical goal of external auditability would be to make the system completely auditable by

any interested party (as there is always a possibility of institutional auditors colluding with system

maintainers). The biggest reason why public auditability is not implemented for existing systems is

that it contradicts clients’ confidentiality and/or similar concerns (e.g., non-disclosure of trade secrets).

Hence, auditing on behalf of the clients or public is performed by the designated auditors who have a

non-disclosure agreement with the system maintainers. Therefore, we will keep in mind that:

• There should be means to perform a complete audit of the system

• A system should ideally provide public auditability insofar it does not contradict the declared

security properties (e.g., clients’ confidentiality)

In particular, we would like to implement the following simplest audit capabilities for the clients:

• A client may want to know all concerning transactions (e.g., incoming and outgoing value

transfers in a ledger) and receive timely updates on these transactions

• A client may want to receive electronic receipts for concerning transactions and for the part of

the state of the system concerning the client (e.g., client’s balance in a ledger). The authenticity

of an electronic receipt should be independently verifiable; it should be difficult to create a fake

receipt, both for a client and for system maintainers

Another property we would like to provide is non-repudiation, i.e., correspondence between the

syntax of transactions recorded in the system, and real-world semantics of these transactions. For

example, we want to ensure that the timestamp of any transaction is accurate, and that it has been
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indeed authorized by the entities purported by its syntax. Basic non-repudiation is a well-studied

problem usually addressed with public key cryptography and secure key management (e.g., using

public key infrastructure with hardware tokens). A bigger challenge is retrospective non-repudiation,

i.e., ensuring transactions remain non-repudiated if some keys (or even the whole underlying public

key cryptosystem) are compromised, and/or if the system maintainers may act maliciously. This kind

of non-repudiation is especially important for public state machine systems, such as public registries.

1.2 Auditable Logs

We are now ready to define the core notion of our study: auditable systems.

Definition 4. Auditable state machine system is a state machine system satisfying Assumptions 1–3

and providing internal and external auditors with sufficient means to conduct online, periodic and/or

by-request audits of the system in order to minimize the risk of system corruption.

Auditability could be beneficial for system auditors since it provides them with data as to the

state of the system, which could be used to quickly identify or prevent system failures (e.g., bank

insolvency; damages incurred by a rogue employee). As audits and regulation in financial services

are often performed on behalf of the system clients, they could indirectly benefit from the system

auditability as well.

For system maintainers, profits from auditability are indirect and correspond to the induced

security properties (e.g., counterfeit resistance, flexible regulation compliance framework, the off-

the-shelf secondary market, and streamlined third-party application development capabilities in the

case of a digital asset ledger). The cost of implementing auditability could be substantially reduced by

using an existing blockchain as a cloud platform (PaaS) [47]; one may argue that external auditability

is the enabling feature for the cloud deployment of auditable state machine systems.

In order to build an auditable state machine system, we postulate that the entire history of

transactions is stored in a linear audit log. It is quite obvious that audits of a state machine system

could be reduced to the audits of its log, as system states could be sequentially restored from the log.

The approach with a linear log is commonly used in distributed computing in replicated logs (see,

e.g., [48]). Blockchains are a subset of replicated logs. Replicated logs provide sufficient and well-

studied tools for internal audits; they enjoy correct operation even if a certain percentage of nodes in

the system behaves incorrectly. Thus, we will assume that audited systems are built using a replicated

log as a starting point.

Definition 5. A replicated log is auditable if it satisfies the following requirements:

1. Log consistency: All changes in the system audit log are valid according to the consistency rules.

(Note that it follows from this property that the system state is also valid.)

2. State consistency: The state of the system corresponds to the state inferred by “replaying” all

transactions in the audit log
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3. Transaction finality: The audit log is append-only, i.e., transactions are never removed from

the log, modified in the log or added to the log retroactively. The only possible operation is

appending transactions to the end of the log

4. Reliable timestamping: transactions in the log are reliably timestamped with a degree of

accuracy sufficient for a problem domain

5. Log uniqueness: The audit log is unique in the sense that all system users (including auditors

and clients) never receive conflicting logs or system states

6. Blame ascription: It is possible to reliably identify parties failing to uphold to the properties

above (e.g., in the case several conflicting system states are presented to different users)

7. Retrospective auditability: It is possible to check that properties 1–6 hold for any previous

moment of time

Compared to the requirements on auditable systems outlined in Section 1.1, we add two additional

requirements deserving explanation: transaction finality and reliable timestamping.

1.2.1 Transaction Finality

Transaction finality (also commonly referred to as log immutability) is a vital requirement for non-

repudiation. Indeed, compromised finality makes statements about transactions challengeable; e.g.,

it becomes impossible to definitively state that a transaction has indeed occurred at the time implied

by its timestamp and ordering rather than was retroactively added to the log later.

Transaction finality may seem to contradict transaction reversibility, which may be required by

the problem domain. For example, a bank may want to reverse transactions during a chargeback

procedure; a public registry may want to remove documents from the registry deemed falsified or

otherwise void by a court decision. However, reversibility could be implemented without removing

or modifying existing transactions in the audit log:

• In a financial ledger, a transaction may be logically reversed by creating a new transaction with

the equal value flow in the opposite direction. Special authorization may be introduced for

reversing transactions (e.g., by encoding the corresponding logic into the smart contracts) for

compliance. For example, in the case of a centrally issued electronic currency the reversing

transaction may be authorized by the currency issuer instead of the sender

• More generally, a special type of transactions could mark a previous log transaction as void

Similarly, log revisions that erase transactions entirely from the log, while more attractive to some

parties, could lead to abuse of the system. A careful system design (e.g., anonymization of sensitive

data with the help of cryptographic commitments, public-key encryption and zero knowledge proofs

of data integrity) could take better care of the issue.
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If there exists an ability for any party to revise the audit log, then the log no longer reflects all

changes to the system state, i.e., it ceases to be a single source of truth about the system. Thus, a

mutable log harms auditability, non-repudiation and increases risks of system corruption.

1.2.2 Timestamping

As with transaction finality, timestamping is beneficial for non-repudiation. Timestamping could be

useful in financial contracts, establishing precedence for copyright, auction bids, etc. Transactions are

timestamped by the system maintainers since clients’ clocks are generally unreliable; it is assumed

that the accuracy of timestamping could be later verified by auditors.

1.2.3 External Auditability Properties

Properties 5–7 from Definition 5 are fundamental for external auditability:

• It is usually not enough for an auditor to check that a system seems to be correct now; he needs

to be sure that it operated correctly in the past, prior to the audit

• Similarly, it is instrumental that the audit log presented to an auditor correspond to the audit log

presented to other users of the system. That is, system maintainers should not be able to craft a

seemingly correct audit log specifically for the purpose of being audited

• If there are violations of the rules, they need to be attributable to specific entities, both for the

purpose of investigation and to discourage system participants from transgressions

As we will see, these properties are substantially more difficult to implement than properties from

Definition 5 corresponding to internal auditability.

2 Auditability in Blockchains

2.1 Replicated Log Structure

A generic replicated log consists of several servers, each of whichmaintains a local replica of the global

log. Changes to the log (i.e., transactions) are requests sent by clients. Servers and clients communicate

among themselves over an unreliable network, which may delay, lose, reorder or duplicate packets of

data. Both servers and clients are identifiedwithin a certain public key cryptosystem; correspondingly,

every message in the system is authenticated. Every replicated log implements a certain consensus

protocol in order to reach common understanding among servers as to the system state; the key part

of consensus is establishing the complete ordering of all the transactions. Consensus usually implies

dynamic server roles (such as a Leader, Candidates and Followers in Raft), which change according to

the network state to maintain system liveness.

Replicated logs are used for fault tolerance (i.e., there is a requirement for a system to remain

operational under the assumption that some hardware or software components may fail). There are

two main types of fault tolerance explored in replicated logs:
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• Ordinary (non-Byzantine) faults include arbitrary network faults (duplicated and reordered

messages, delays in message delivery, packet loss, etc.) and replicas being non-responsive, e.g.,

because of hardware faults. Ordinary fault-tolerant consensus algorithms include Paxos [49]

and Raft [48], which are implemented in many distributed databases

• Byzantine faults [13, 14] correspond to inconsistent behavior of replicas, whether caused by

benign faults or by an active adversary. Byzantine fault-tolerant (BFT) consensus algorithms

include PBFT [15], QU [50], Zyzzyva [51], RBFT [52], Aardvark [53], etc.

Fault-tolerant systems have well-defined limits of tolerating faults. For example, it is impossible

to reach agreement with even a single faulty server if the system is deterministic and asynchronous,

i.e., when message relay and processing can be arbitrarily slow [54]. Thus, the network is usually

considered to be partially synchronous [55]: bounds on message relay and processing exist, but are

not known a priori1. If there can be f simultaneously faulty servers in the system, the minimum

number of servers required for a functional ordinary fault-tolerant system is 2f + 1; for a Byzantine

fault-tolerant system, the minimum number is 3f + 1 [58].

Because of the auditability requirement, the structure of an auditable log network differs from

the client – server model utilized for replicated logs. Instead, it includes 3 types of replicating nodes

corresponding to three user roles described in Section 1:

• Consensus/maintainer nodes are nodes that participate in consensus. Each consensus node

maintains the up to date system state and possibly (but not necessarily), the complete audit log.

Consensus nodes may be identifiable if it is required by the consensus algorithm

• Verifying/auditing nodes are nodes operated by external auditors. These nodes do not take part

in consensus, however, they maintain the complete blockchain. An auditing node can verify the

correctness of all transactions or an arbitrary subset of transactions not known to the system

maintainers; it may perform online verification of incoming blocks of transactions or verify

transactions on demand

• Lightweight nodes are nodes operated by clients in order to satisfy their needs in simplest

audits (Section 1.1). Lightweight nodes do not participate in consensus and do not store neither

the full system state nor the full blockchain. Instead, a lightweight node replicates a chain of

block headers and transactions concerning the client. Lightweight nodes could be identifiable

in order to limit transactions the node has the access to. Semi-anonymous lightweight nodes in

a public system could be implemented using Bloom filters [59], as in Bitcoin2

It follows from the properties of BFT systems that a BFT replicated log with n consensus nodesmay

provide protection against local attacks in which the adversary controls at most (n − 1)/3 consensus

1An alternative approach relies on a secure source of randomness [56, 38], which allows building a Byzantine fault-

tolerant consensus in a completely asynchronous setting. Another approach is to use failure detectors [57] that can tell with

non-zero accuracy whether a certain replica works properly.
2Note that Bloom filters as implemented in Bitcoin do not provide a sufficient level of privacy [60].
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nodes, making these attacks impossible to succeed under standard cryptographic assumptions. In

order to provide full protection from local attacks, all components of the system need to be Byzantine-

fault tolerant with the expected degree of redundancy; if there are centralized components, such as

an authorization verification module, they are required to be incorruptible.

2.2 Blockchains

Given the description above, it may seem that a BFT system with appropriate business logic could

be effectively used to implement an auditable log as per Definition 5. The main obstacle is that BFT

systems are usually not adapted for external audits and do not mitigate system-wide attacks for the

following reasons:

• Replicated logs usually contain log compaction logic, which is detrimental in audits

• All consensus logic is internal to the servers, whereas external parties (including auditors) have

a limited view of the system operation. For this reason, wewouldwant for the audit log to record

voting results for each consensus decision; it could help both in ascribing blame and verifying

the correctness of the audit log retrospectively

• To complete any request, a client needs to receive a response from at least 1/3 of consensus nodes

(e.g., at least 34 consensus nodes in a system with 100 such nodes). This drastically differs from

a common practice when a client communicates with a system using a single entry point, such

as a website

• Log uniqueness is only partially addressed by BFT consensus. It is impossible to create an

alternative log if the system corresponds to the BFT threat model (i.e., there is no more than 1/3

of faulty servers). However, the threat model itself may be inappropriate. If there is a possibility

of maintainer collusion (Assumption 3), then the maintainers can overwrite the log partially or

completely at any time, present different versions of the log to various clients and auditors, etc.

2.2.1 Transaction Blocks

Blockchain architecture solves problems with blame ascription, retrospective audits and interaction

with clients by grouping transactions into blocks (cf. checkpoints in PBFT). Consensus decisions are

made on the block level instead of the transaction level. Each block consists of two parts: relatively

small block header, the size of which does not depend on the number of transactions in the block,

and transactions. Transactions are committed to the block header, usually as a root of a Merkle tree

[61] (Merkle root) since Merkle trees provide the optimalO(logN) length of a proof of existence for a

transaction included into a block withN transactions. A block header can also include:

• Reference to the previous block (a cryptographic hash of its header)

• Block timestamp

• Commitment to the state of the system (e.g., using Merkle Patricia trees [62, Appendix D])
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• Data allowing to independently verify the consensus. In a consensuswith known validators (e.g.,

Tendermint [27]), consensus-related data in the block header could be a set of digital signatures

of the previous block belonging to more than 2/3 of validators. In a proof of work consensus,

consensus-related data is a nonce and the network difficulty; a block is valid if its hash is less

than a threshold value determined by the network difficulty

Grouping transactions into blocks is beneficial in several ways:

• Batching transactions decreases the number of messages sent over the network. Batching may

increase delays in transaction processing, but the delay is acceptable for most applications

• Blocks boost the speed of verifying consensus decisions. The boost is particularly important

if these decisions are encoded as digital signatures, as operations with digital signatures are

computationally costly compared to other parts of block header verification

• Blocks introduce a possibility of efficient simplest audits and lightweight nodes (see Section 2.4)

Because of the block structure, a synchronizing node can reliably download blocks from any node

regardless of whether it participates in consensus. Thus, the network of auditing nodes could provide

a blockchain content delivery network (CDN) [63], whichwould distribute the loadmore evenly among

nodes replicating the blockchain in whole. Bitcoin demonstrates a well-developed auditing node

network with over 5,000 auditing nodes [64]. The number is particularly impressive because auditing

nodes in Bitcoin perform online validation of all incoming blocks.

2.2.2 Autonomy

Another characteristic feature of blockchains is embedding authorization data into all transactions;

i.e., for any transaction it is possible to determine who authorized the transaction. Authorization data

is commonly represented as digital signatures, possibly of more than one party (e.g., multisignature

wallets [65]; cf. multi-factor authentication).

More generally, blockchains are autonomous (i.e., minimizing reliance on external components

as sources of truth), which makes blockchains good for external audits and strong non-repudiation

policies. A scheme in which some transactions on a blockchain do not include any authorization data

would not be autonomous, as it would rely on unprovable and non-auditable (within the blockchain)

assumption that authorization logic was properly executed when the transaction was made. If a

PKI-based scheme is used for authorization, all PKI operations (adding a new certificate, revoking

a certificate, etc.) should ideally be recorded into the blockchain – otherwise the system becomes

critically dependent on non-verifiable external assumptions.

Consensus verification data in block headers could be viewed as another example of blockchain

autonomy. Similar to the example above, all changes to consensus nodes (adding a new node,

removing a node from consensus, etc.) should be recorded in the blockchain to increase auditability.

With the autonomy property described, we are ready to define blockchains in terms of auditing.
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Definition 6. A blockchain is a replicated, autonomous, Byzantine fault-tolerant log with consensus

based on blocks that permits external auditing and lightweight nodes, and provides non-repudiation

of the log entries.

Note that support of external audits and lightweight nodes can be directly inferred from the very

term blockchain (i.e., organization of an audit log as a linear sequence of blocks of transactions that are

linked within a block with the help of Merkle trees)3. Autonomy and havingmultiple consensus nodes

are implied in the Bitcoin white paper and could be useful in most practical blockchain applications

since these features provide internal auditability and fault tolerance. Similarly, accountability and

non-repudiation are implicit goals of the Bitcoin Blockchain design and are achieved with proof of

work and incentivization of the blockchain maintainers with the help of mining. We require these

properties from blockchains, but do not enforce a particular way to implement them.

In the following discussion, we will consider a subset of blockchains with identifiable consensus

nodes (permissioned blockchains); blockchains with anonymous consensus nodes (permissionless

blockchains) are briefly considered in Appendix A.

Definition 7. Permissioned blockchain is an (atomically) consistent blockchain with the identifiable

consensus nodes. Auditing and lightweight nodes in a permissioned blockchain may be identifiable

according to security requirements on the system.

Atomic consistency property [66] is required in order for blockchains to fully satisfy Definition 5

with regard to transaction finality; BFT replicated logs with identifiable nodes are generally consistent

by construction.

2.3 Accountability Threat Model

Per Section 2.1, permissioned blockchain designs take care of internal audits by making local attacks

impossible provided security parameters of the system are chosen correctly (e.g., each component of

the system has an appropriate level of redundancy). Therefore, we need to analyze susceptibility of

blockchains to system-wide attacks.

For the purpose of external audits, the system looks as follows: There is a monolithic construct

of system maintainers, which supply audit nodes with properly authenticated blocks (e.g., by using

digital signatures of 2/3 of the consensus node set, as in Tendermint). The attacker is the colluding

majority of system maintainers who control 2/3 or more of the consensus nodes. The goal of the

attacker is one of the following:

• Audacity attack: make honest parties in the system accept an incorrect audit log

• Revision attack: retroactively modify the audit log and make honest parties accept the change

• Equivocation attack [31]: present various external nodes with the conflicting versions of the

audit log (e.g., in order to hide service insolvency)
3Compare with the term distributed ledger, in which replication (or, more generally, distribution of data) among several

consensus nodes is explicit, and other properties from Definition 5 may or may not apply.
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By eliciting these kinds of attacks, we assume, per A. Lincoln’s words, that the attacker “cannot

fool all of the people all of the time,” i.e., cannot continuously lie to all clients and auditors in the same

manner for the prolonged period of time. If this assumption does not hold (e.g., if the blockchain in

question has inappropriately lax consistency rules), neither blockchains nor alternative technologies

can mitigate an attack. Additionally, we do not analyze censorship attacks since they do not violate

blockchain consistency rules if a blockchain is autonomous; as censored transactions are not reflected

on the blockchain, detecting censorship requires external sources of truth.

For the purposes of this paper, we restrict our definition of an attack in the following ways:

• The consistency rules of the system are known in advance and cannot be changed by the attacker

• The attacker does not control auditing and client nodes; e.g., there are no backdoors allowing to

skip rule checks for the logs corrupted by the attacker on auditor and client nodes

• The attacker does not control the network. In particular, he does not control communication

among honest parties, neither can he delay the deliverance of messages to honest parties for

prolonged periods of time. Attack duration is much longer than a typical latency of message

delivery in the system

• The attacker can lie consistently for a long period of time, but only if doing so is computationally

and economically sound

In most cases, system-wide attacks cannot be considered impossible. We consider the attack thwarted

if it is timely detected by honest parties and irrefutably attributed; this may prevent attacks bymaking

their consequences (e.g., legal action) unfavorable for the attacker. Additionally, we want to make the

direct attack costs as high as possible.

The above restrictions on the attacker may be too optimistic. For example, an authoritarian

state government may coerce citizens to accept revisions to the blockchain-based public registry

of immovable property and not be held liable despite compelling evidence; after all, blockchain

technology is a human tool. Despite this, blockchain technology provides security aspects making

it beneficial even in the worst case:

• Because blockchain data is distributed to lightweight nodes and auditor nodes out of the control

of the attacker, the attacker would not be able to destroy the evidence pertaining to the state of

the blockchain before the attack. The snapshot of the blockchain before the attack could still be

accessed by clients and independently verified as authentic

• As blockchains are based on universalmathematical laws instead of trust in systemmaintainers,

clients’ appeal to courts could be more likely to succeed

2.4 Blockchain Receipts

Basic blockchain accountability could be provided with the help of blockchain receipts – a particular

kind of electronic receipts. The general idea of a blockchain receipt is to provide a succinct summary
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regarding a particular transaction or a part of a system state authenticated by system maintainers.

Blockchain receipts are designed to be independently verifiable; e.g., they could be used by a client

to prove a payment or his balance in third-party applications. At the same time, receipts improve

accountability in the following ways:

• Blockchain receipts allow to efficiently verify that information provided to a client corresponds

to the information provided to the system auditors

• The construction of blockchain receipts is such that malicious actions by system maintainers

would render previously issued blockchain receipts invalid, therefore negatively impacting

performance and increasing indirect costs of a system-wide attack

In order to deduce the framework for blockchain receipts, we use the following assumption.

Assumption 4. There exists at least one correct auditing node in the network at eachmoment of time.

Because the attacker cannot prevent auditing nodes communicating with each other, all auditing

nodes will have the same version of the blockchain at all times. We assume the attacker cannot supply

an auditor with an incorrect version of the blockchain because that would provide the auditor with

the sufficient evidence of the attack.

Theorem 1. Under Assumption 4, any system-wide attack defined per the threat model in Section 2.3

involves presenting some clientswith a version of blockchain different from the one presented to auditors.

Proof.

The attacker cannot present an auditing node with an incorrect version of the blockchain; hence,

if an attack involves creating an incorrect audit log, it will differ from the version seen by the auditors.

The attacker cannot revise auditors’ version of the blockchain, hence, if the attack includes log revision,

it also creates several versions of the blockchain. If the attacker’s goal is to create several versions of

the blockchain, the proof is self-evident. ■

Therefore, we can formulate the problem of thwarting a system-wide attack as follows.

Problem 1. The attacker provides system auditors with a cryptographically authenticated statement

⟨A, σA⟩, where A is a full audit log, and σA is its cryptographic authentication, and a client with an

authenticated receipt ⟨B, σB⟩. The client wants to be able to check whether B contradicts to A.

IfB is a free-formstatement not tied to the blockchain in anyway, the task of checking compatibility

between A and B could be difficult, especially if the blockchain is fully private, i.e., the client has no

information about A. In this case, the client may verify B only by submitting it to the auditors, which

would arguably take place only if the client is already suspicious about the system operation. In order

to simplify the check, receipts could be made electronic.

Definition 8. A blockchain receipt (called SPV proof in other research) for a certain transaction is a

chain of block headers up to the block containing the transaction in question, together with theMerkle
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path [61] to the transaction and the transaction itself in the same digital form as used in the blockchain

(Fig. 1). Similarly, a blockchain receipt for a part of the system state at a certain block is a chain of

block headers up to the block, a path in the Merkle Patricia tree and the state itself in the digital form.

..Tx1. Tx2. Tx3. Tx4.... Tx5. Tx6. Tx7. Tx8....

root

.

Previous block: …
Merkle root: root

.

Previous block: …
Merkle root: …

Figure 1: The structure of a blockchain receipt for a transaction Tx3. Hashes included into the Merkle path are

marked with fill

A blockchain receipt can be verified in several steps:

1. Check that a transaction or a system state in the receipt is valid on its own right

2. Check that the hash of the transaction or the system state and the Merkle path in the receipt

yield the same root hash as mentioned in the header of the corresponding receipt block Brec

3. Check that each block header in the chain is valid according to the consistency rules (e.g.,

properly authenticated)

4. Check that the chain of block headers forms a link to the first blockchain block (genesis block)

Bgen specified by the consistency rules

5. Verify that auditors have the same state of the chain. This could be accomplished by supplying

the hash of Brec to a web service maintained by an auditor

As per digital timestamping research, blockchain receipts could bemade compact by introducing a

non-trivial block linking scheme (i.e., bymaking eachblock reference a deterministic subset of previous

blocks instead of the preceding block in the chain) [67, 19]. Linking schemes allow creating receipts

withO(logBrec.h) block headers, where Brec.h is the height of the receipt block in the blockchain.

Because of the properties of Merkle trees, receipts are not falsifiable: it is impossible to create a

valid receipt for a transaction or a part of the system state not present in the blockchain. It is also

impossible to construct two different sets of transactions or Merkle Patricia trees for the system state,

which would hash to the same root. Blockchain receipts ascribe blame in the following sense: if the

On Blockchain Auditability 18



receipt is incorrect (on its own right, or together with some other receipts, e.g., as a result of a double-

spend), or the chain of block headers in the receipt contradicts the one supplied to auditors, the blame

is attributed to specific consensus nodes.

In order to make blockchain receipts more compact, block headers could be made public. This

would not harm confidentiality, as block headers do not include any confidential information; in

particular, headers contain no recoverable information about transactions in the block or the system

state. A public sequence of block headers could serve another purpose: if the access to block headers

is anonymous, the attacker cannot create multiple blockchain versions, as any of the requests to read

block headersmay belong to an auditor. Thus, block verification performed by clientswould no longer

require interaction with the auditors.

With public block headers, a chain of block headers in receipts could be replaced with a single

block header hash (and possibly the block height to facilitate lookups). Lightweight nodes essentially

implement this logic and collect client receipts together with replicating the chain of block headers.

If a non-trivial block linking scheme is used, a lightweight node may skip downloading and verifying

headers for blocks that contain no transactions related to the node (which, as stated previously, could

be determined based on authentication or Bloom filters).

If the attacker revises the blockchain, all receipts in the blocks following the modification become

invalid, because all hashes of succeeding blocks change. For this reason, it is not sufficient to include

just the block height into a receipt, as Merkle roots and/or Merkle Particia roots in some succeeding

blocks after the attack may remain the same. All lightweight nodes effectively cease functioning after

a revision attack because they no longer accept block headers proposed by the attacker; because of

the transaction finality property, any valid blockchain update would only append new blocks, and not

replace them. Depending on the problem domain, non-functioning receipts and lightweight nodes

may be harmful enough to deter a revision attack.

2.5 State Commitments

State commitments briefly described in Section 2.2 prevent a minority of malicious consensus or

auditing nodes from withholding transactions from clients equipped with lightweight nodes. This is

because nodes cannot fake state commitments; thus, withheld transactions would make the system

state reported to the client inconsistent with that inferred by transactions received by the client.

Example. Consider a blockchain implementing an electronic currency; a state commitment in this

case could be implemented as a Merkle Patricia tree mapping all accounts in the system to their

balance. Client Alice connects to a malicious node (Mallory) using a lightweight node. Another client

Bob then sends to Alice some currency. If there is no state commitment, Mallory can easily withhold

this transaction from Alice; in order to detect foul play, Alice would have to connect to other nodes.

On the other hand, if there is a state commitment containing all client balances, Alice can watch her

balance and request a proof that her balance is indeed committed in the block header. Because of

properties of Merkle Patricia trees, Mallory will not be able to construct such a proof for the old Alice’s
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balance once a transaction from Bob to Alice is included into the blockchain.

2.6 Whistleblowing

The setup described in Section 2.2 allows for effective whistleblowing in the case of malicious activity

being perpetrated by system maintainers. A whistleblower can submit a fraud proof in the form of

contradicting blockchain receipts (or, in the case of an equivocation attack, conflicting block headers

at the same height) to the system auditors or leak the proof anonymously. Because of the structure

of block headers and blockchain receipts, the revealed fraud proof does not require any additional

authentication. A fraud proof warrants an investigation by the auditors, as it unambiguously signifies

that the blockchain system is operating incorrectly: either the systemmaintainers are participating in

a system-wide attack on the system, or an external perpetrator has successfully forged a fraud proof,

which is only possible if he has compromised more than 1/3 of consensus nodes.

3 Increasing Accountability: Blockchain Anchoring

In some cases, Assumption 4 may be too optimistic. In particular:

• Auditors may be non-existent, may not function properly (e.g., due to the collusion with the

attacker) or not to perform sufficient blockchain checks

• The attacker may control all sources supplying block headers to users, correctly identify the

origination of each request and lie to them correspondingly. This is especially easy if access to

the blockchain is authenticated and provided exclusively by the system maintainers

In order to prevent system-wide attacks under these conditions, blockchains may utilize anchoring

and/or proof of work described below. Even if the system falls under the optimistic assumptions,

additional measures to increase accountability, especially anchoring, could be quite cost-effective and

would help diversify the security of the system.

Anchoring and proof of work help against equivocation and revision attacks; on their own, they

do not prevent system maintainers from including contradicting transactions into the blockchain

(audacity attacks in Section 2.3). Intuitively, audacity attacks may be overcome either by having

functioning auditing nodes, or by using a public blockchainwith encrypted sensitive data (Section 4.2).

3.1 Generic Anchoring

In traditional timestamping services, service accountability can be accomplished using anchors. An

anchor is a cryptographic hash of the current system state (in terms of blockchains, the latest block

header) published using an anchoring service – usually a printedmedium (e.g., a newspaper). Anchors

are published periodically, e.g., daily.

In a timestamping scheme with anchors, a user can check the existence a link between the receipt

block Brec and any anchored block Banc (which may be situated in the blockchain before or after
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Brec) and ensure that the anchor is indeed present in the printed medium. A link between Brec and

Banc could be provided interactively by systemmaintainers; in the case the sequence of block headers

is public, it could be obtained non-interactively. In the simplest case, the link is the chain of block

headers between Brec and Banc; using linking schemes, it is possible to shorten the length of the link

to O(log |Brec.h − Banc.h|). In order to increase reliability of the result, the verifier may try several

anchored blocks Banc; verification must succeed for all of them. To ensure accountability, it suffices

for every client to check a link to the first anchor published after Brec [19].

Because of the blockchain construction, it is infeasible to create a link from an anchored block to

a block not present in the same chain. Thus, it is guaranteed that all receipts with the receipt block

up to the latest anchor belong to the same version of the blockchain. On the other hand, receipts

created after the latest anchor are unreliable in the sense that the attacker may produce seemingly

valid receipts for data on several alternative chains (Fig. 2).

..Genesis
block

. Banc

.

Anchor

. Bsplit...

Balice

.

Bbob

Figure 2: Seemingly valid, but contradicting receipts provided by EveBank for clients Alice (with the chain of

blocks ending atBalice) and Bob (with the chain of blocks ending atBbob). To produce contradicting receipts,

EveBank creates two versions of the blockchain with the split starting at the block Bsplit, which is located

after the latest anchored block Banc. Any anchor checks performed by Alice and Bob will succeed, despite

them seeing different versions of the blockchain. Notice that in order to perform the next anchoring,

EveBank needs to choose a single blockchain version; thus, at least one of Alice’s and Bob’s receipts will

become invalid after the next anchoring.

The security of anchoring comes from the following assumptions:

• The printed medium is publicly available, meaning verification could be performed by any user

• Each copy of the printed medium contains no more than a single anchor

• The printed medium cannot identify its reader and display different anchor values to different

readers (i.e., demonstrate Byzantine behavior). Creating separate versions of the medium for

specific readers may be risky and economically costly

• In order to retroactively modify the blockchain, the attacker would need to reprint all medium

copies after the retroactive modification and destroy the existing ones. This could be practically

infeasible or very costly for a comparatively popular printed media
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While these assumptions are sound, using printed media for anchoring has certain drawbacks. Most

printed media are issued no more often than daily; thus, the pool of unreliable latest transactions not

secured by an anchor may be quite large. Additionally, accessing anchors in printed form could be

inconvenient; it introduces the human factor into the verification procedure.

Publicly available block headers replicated by auditors and lightweight nodes could be viewed as

a particular case of anchoring. If the blockchain is replicated only by the auditors, and clients are not

aware of blockchain data, the anchoring procedure is no longer effective against equivocation attacks;

as the auditing nodes are identifiedwithin the system (either explicitly or implicitly as all nodes except

for the consensus nodes), the colluding systemmaintainers can provide the auditors with consistently

falsified information.

Timestamping authorities (TSAs) [68] could be treated as a subtype of anchoring services. A TSA

is a trusted third party providing reliable timestamping; in the blockchain context, one or more TSAs

could be used to periodically timestamp the latest block header. Utilizing TSA services in a blockchain

system does not solve the problem of accountability completely, simply shifting it from the blockchain

maintainers to the TSAs. Furthermore, TSAs introduce additional trusted parties into the system.

Nevertheless, TSAs could complement the accountabilitymeasures described below, as well as employ

these measures themselves.

Anchoring provides retrospective non-repudiation even if a public key cryptosystem used by the

blockchain (but not hash functions used for linking transactions) is compromised4. In this case,

anchors can help provide a definitive answer whether a given blockchain receipt was produced at

the implied time. As it is currently understood, quantum computers would compromise presently

used public key cryptosystems (e.g., RSA and elliptic curves), but not hash functions; therefore, non-

repudiation provided by anchoring can be quite meaningful.

3.2 Proof of Work

In the blockchain design proposed by Satoshi Nakamoto, accountability is achieved without relying

on third-party anchoring services, which is specifically addressed in Sections 3, 4 of the Bitcoin white

paper. Instead, Nakamoto’s design relies on proof of work (PoW): the cryptographic hash of each block

header treated as an unsigned integer needs to be less than a specific threshold which depends on

the consensus-based network difficulty. The difficulty is automatically adjusted to keep the expected

time interval between blocks constant (10 minutes in Bitcoin). The consensus algorithm assumes the

blockchain with the greatest cumulative block difficulty as valid.

System maintainers in PoW blockchains are not identified for consensus. The maintainers are

incentivized with cryptocurrency native to the blockchain, by discovering (mining) valid blocks (block

reward), and by including transactions into a block (transaction fees).

PoW consensus design and miner incentivization provides economic accountability:

4 Non-repudiation accounting for possible weaknesses in hash functions may be achieved by utilizing measures akin to

those described for evidence records in RFC 4998 [69].
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• As the blockchain is fully public, conflicting versions of the blockchain are easily detectable

• System maintainers spend real-world resources (e.g., electricity) on proof of work. Therefore,

equivocating ismeasurably costly; playing against the rules would result in system maintainers

losing their revenue. Similarly, retroactively modifying the blockchain requires resources to

produce a blockchain that overrides the blockchain produced by honest system maintainers

The cost of retroactively modifying a PoW blockchain measurably increases with time passed

since the intended modification (i.e., PoW blockchains are designed with long-term non-repudiation

in mind). The older the modified transaction, the more computational work to create a blockchain

accepted by honest nodes (Appendix B; cf. the number of issues needed to be reprinted and swapped

during an attack on printed media anchoring).

Because PoW is secret-free (i.e., its security is not contingent upon non-disclosure of information,

such as private key material when using public key cryptosystems), there is no way to reduce attack

costs short of breaking the hash function that PoW is based on. Compare with traditional financial

systems, inwhich the attack costs can be substantially reducedwith access to secrets and/or negligence

by the personnel responsible for the manual verification of transactions (for an example, see the

compromise of the SWIFT network in 2016 [70]).

In order to remove, add or modify a sufficiently old transaction (>1 day old) from the PoW

blockchain, an attacker would need to:

1. Acquire enough proof-of-work mining equipment in order to compete with the honest system

maintainers. Rationalmaintainers are unlikely to participate in long-term attacks on the system,

as it would cause substantial problems with the blockchain operation for a prolonged period

of time and would therefore negatively impact the price of the blockchain cryptocurrency.

Therefore, cryptocurrency rewards obtained as a result of the attack is unlikely to cover attack

costs for the participating maintainers.

2. Provide infrastructure for themining equipment (electricity supply, cooling, datacenter housing,

etc.). Mining process could need to be geographically distributed for fault tolerance.

3. Operate the mining equipment continuously for a long period of time in order to override the

blockchain produced by honest transaction processors. If the attacker has two times the hashrate

of honest systemmaintainers, he needs the same time as the age of a modified transaction at the

start of the attack (e.g., a 1-year long attack for a year-old transaction) [37].

Thus, the cost of a long-term attack is proportional to the cost of mining equipment securing the

PoW blockchain. In blockchains with memory-hard proof of work (e.g., Ethereum), mining is mostly

performed on general-purpose GPUs; therefore, an attacker could decrease attack costs by renting

equipment for the attack duration, acquiring it with the help of botnets or selling the equipment after

the attack is accomplished. In the case of Bitcoin, the attack cost is increased by the fact that mining

equipment is highly specialized. The expenses on designing, producing, and maintaining bitcoin

mining equipment necessary for a long-term attack would be prohibitively high for many practical
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applications (they could be estimated as a billion US dollars), and they steadily increase as a result of

market competition among bitcoin miners.

3.3 Blockchain Anchoring

Observe that requirements on anchoring services described in Section 3.1 are similar to that of

auditable logs. Indeed, an anchoring service requires (anchor) finality, reliable timestamping and

uniqueness capabilities. Therefore, it could make sense to use another blockchain as an anchoring

service, provided that the latter is public and sufficiently distributed (in order to prevent crafting data

for a particular user) and is accountable on its own. As shown in Section 3.2, blockchains with proof of

work (e.g., Bitcoin) satisfy accountability without requiring anchoring. Thus, these blockchains could

be used for blockchain anchoring.

Definition 9. Anchored blockchain is a blockchain that requires anchoring (e.g., a public registry).

Target blockchain is a PoW blockchain that acts as the anchoring service (e.g., the Bitcoin Blockchain).

The basic blockchain anchoring procedure is as follows.

1. Obtain the compact form of the current state of the anchored blockchain, i.e., a cryptographic

hash of the header of the latest block in the anchored chain

2. Create an anchoring transaction for the target blockchain authorized by the supermajority of

consensus nodes specified according to security assumptions on the anchored blockchain. Per

ordinary Byzantine fault tolerance assumptions, the anchoring transaction should be authorized

by more than 2/3 of consensus nodes

3. Broadcast the anchoring transaction to the target blockchain, or send this transaction directly to

known maintainers on the target blockchain who may provide a SLA for anchoring

4. Wait until the anchoring transaction is sufficiently confirmed according to security assumptions

for the target blockchain. For example, a Bitcoin transaction may be considered practically final

after it has 6 confirmations [71] (i.e., when there are 5 blocks built on top of the block including

the anchoring transaction)

5. (Optional) Add into the anchored blockchain an SPV proof for the placement of the anchoring

transaction on the target blockchain

Anchoring could be performed periodically (e.g., every 30 minutes). Depending on the problem

domain, blockchain anchoring could be considered mandatory for blockchain validity (e.g., the block-

chain may be considered invalid if no anchor was produced for the latest 12 hours). Otherwise, a

failure to produce anchors for the extended period of time could warrant the investigation by the

auditors and carefully worded alerts for the clients.

Compared to traditional medium anchoring, blockchain anchoring has the following advantages:

• Blockchain anchors could be verified automatically by auditing and lightweight nodes (e.g., by

using a lightweight node for the target blockchain) and be more accessible than printed anchors
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• Blockchain anchoring could be significantly more frequent, meaning there is less non-anchored

transactions at each moment of time

• Blockchain anchoring is measurably cheap (its price per anchor is generally determined by

transaction fees on the target blockchain) and permissionless, meaning anchoring could be

performed without reaching an agreement with the anchoring service

• Blockchain anchoring could provide more measurable attack costs than traditional anchoring

• Blockchain anchoring allows for easier anchor authorization

As we argued in Section 3.2, the Bitcoin Blockchain is the most resilient among PoW blockchains

in terms of attack costs. The attack would most likely fail to be covert because of the necessary

preparations and, in any case, would fail to covertly replace the anchors (as the target blockchain is

fully public), therefore defeating the attack purpose. An analogue of this “attack” in the case of printed

media anchoring would be an attacker buying the printed media or disrupting its operation; in both

traditional and blockchain anchoring, such an “attack” would be obvious to the auditors and clients.

The rest of the section will be dedicated to anchoring on the Bitcoin Blockchain specifically.

3.3.1 Anchoring Transaction

The structure of anchoring transactions is determined as a part of consensus rules on the anchored

blockchain. In the basic case, the anchoring transaction consists of one input and two outputs.

The transaction spends on transaction fees a certain number of bitcoins associated with an address

jointly managed by consensus nodes. (We consider below two practical approaches of joint address

management: Bitcoin multisignatures and threshold ECDSA signatures, each of which has its own

pros and cons.) The change is returned to the same address or another address also jointly controlled

by consensus nodes. Besides the change output, the anchoring transaction contains a provably

unspendable RETURN output, which is used to store the anchored information. The approximate

structure of this output is as follows:

• A short string serving as an identifier of the anchored blockchain (≈4 bytes)

• Height of the anchored block to facilitate anchor verification (≈4 bytes)

• Anchored block header hash (32 bytes)

The consensus rules should determine all anchoring transaction contents except for authorization.

For example, the consensus rules should deterministically select an unspent transaction output for

spending in the case several are available, transaction fees, etc. Authorization of the anchoring

transaction generally requires interaction among the consensus nodes and thus needs to be a part

of the consensus algorithm.
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3.3.2 Bitcoin Multisignatures

Themost straightforward scheme for Bitcoin anchoring is to utilize Bitcoinmultisignature transaction

capabilities [65]. In this scheme, every consensus node on the anchored blockchain independently

generates a distinct key pair {(ski, pki)}3f+1
i=1 in the secp256k1 elliptic curve cryptosystem. (Recall that

f is the maximum number of Byzantine nodes in the system and 3f + 1 is the minimum number of

consensus nodes required to tolerate this number of Byzantine failures.) Public node keys pk1, pk2, …,

pk3f+1 are then publicly announced in order to facilitate audits; they may be certified by certificate

authorities. A pay-to-script-hash is formed from the public keys:

HASH160 HM EQUAL,

where HM is the 20-byte hash of a standard multisignature script, which allows for a transaction to

be authorized by any 2f + 1 consensus nodes:

HM = hash160({2f + 1 pk1 pk2 . . . pk3f+1 3f + 1 CHECKMULTISIG}).

(Hereafter, figure braces in Bitcoin Script correspond to the parts of the script jointly serialized as

a single data item.) HM determines Bitcoin address M jointly managed by the consensus nodes,

which is used to pay transaction fees for anchors. The balance of the address could be replenished

automatically or manually by maintainers of the anchored blockchain or by third parties.

To authorize an anchoring transaction, consensus nodes independently sign it and submit the

signatures, which are then agreed upon as a part of the consensus (Fig. 3). In a PBFT/Tendermint-like

consensus, agreement could be reached within one block after the block being anchored. Indeed,

during voting for the next block Bnext after the anchored block Banc, consensus nodes can share

among themselves individual signatures on the anchoring transaction similarly to the signatures on

Banc (which are to be included into Bnext). When Bnext is finalized, the set of signatures on the

anchoring transaction for a supermajority of consensus nodes is finalized as well. After that, the

transaction can be submitted into the Bitcoin network by any consensus node.

Inputs Outputs

(Amount: balance)

Script: 0 σi1 σi2 . . . σi2f+1
{2f + 1

pk1 pk2 . . . pk3f+1 3f + 1 CHECKMULTISIG}

Amount: balance − fee

Script: HASH160 HM EQUAL

Amount: 0

Script: RETURN {Ichain Banc.h H(Banc)}

Figure 3: The structure of the anchoring transaction using Bitcoin multisignature capabilities. {σj}2f+1
j=1 are

signatures of consensus nodes with monotonically increasing indices 1 ≤ i1 < i2 < · · · < i2f+1 ≤ 3f + 1;

Ichain is the anchored chain identifier; Banc.h and H(Banc) are the height and the hash of the anchored

block, respectively. Signatures σj are agreed upon among consensus nodes as a part of the consensus

algorithm on the anchored blockchain.
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In practice, Bitcoin native multisignature capabilities are somewhat limited by anti-DoS measures

put forward by the notion of standard transactions [72]. Non-standard transactions are commonly not

relayed by Bitcoin nodes; most bitcoin transaction processors currently create blocks with standard

transactions only. According to the current Bitcoin specification [73], standard transactions can

contain nomore than 15 public keys in a single multisignature, which effectively yields the restriction

on the number of Byzantine nodes f ≤ 4. Correspondingly, Bitcoin multisignatures could be only

used for anchoring blockchains with a small number of consensus nodes. Even if the restrictions

put forward by standard transactions are lifted, anchoring transaction size linearly increases with

the number of consensus nodes on the anchored blockchain; i.e., managing anchoring transactions

becomes more complicated.

3.3.3 Threshold ECDSA Multisignatures

Threshold ECDSA signatures [74, 75, 76] allow to compress anchoring transaction authorization into

a single ECDSA signature. Correspondingly, the anchoring transaction would use an ordinary pay-to-

pubkey-hash address corresponding to a certain public key pk. Signatures on transactions keyed by

pk is produced by the supermajority of consensus nodes (Fig. 4).

Inputs Outputs

(Amount: balance)

Script: σ pk

Amount: balance − fee

Script: DUP HASH160 hash160(pk)

EQUALVERIFY CHECKSIG

Amount: 0

Script: RETURN {Ichain Banc.h H(Banc)}

Figure 4: The structure of the anchoring transaction using threshold ECDSA signatures. Braces correspond

to the parts of Bitcoin Script jointly serialized as a single number. Signature for the transaction input is

obtained as a part of the consensus algorithm on the anchored blockchain.

Threshold signatures use Shamir’s secret sharing technique [77] to distribute shares of the private

key sk corresponding to pk, among the consensus nodes. During signing, every node creates a partial

signature, which are then exchanged among nodes to compute the combined signature keyed by pk.

Unlike native Bitcoin multisignatures, threshold signatures are interactive (i.e., require cooperation

among the consensus nodes to be produced); thus, the time and computational resources spent on

producing a combined threshold signature could be greater than in the case of Bitcoinmultisignatures.

The threshold signature protocol describedbyGennaro et al. [76] satisfies Byzantine fault tolerance

assumptions, i.e., can tolerate up to f Byzantine faults in the system with 3f + 1 nodes. Therefore,

threshold signatures could be used for authorizing anchoring transactions without relaxing security

assumptions on consensus nodes. To further increase resilience of the signing scheme, the threshold

signature protocol allows proactively refreshing private key shares among consensus nodes while
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keeping the combined private and public keys the same [78].

Compared to native Bitcoin multisignatures, threshold signatures are more compact. The size of

anchoring transactions does not depend on the number of consensus nodes; thus, threshold signatures

could be used for anchoring blockchains with hundreds of these nodes. This improvement is achieved

at the cost of requiring O(f2) dedicated computations performed on each consensus node [76].

3.3.4 No Multisignatures

A simpler version of anchoring could be obtained by relaxing fault tolerance of the process, i.e., not

requiring a 2/3 supermajority of the consensus nodes to form an anchoring transaction on step 2 of

the procedure on p. 24. For example, anchoring transactions could be submitted by a single consensus

node rotated according to a certain protocol, as it is performed in Factom. Compared to the fault-

tolerant methods described above, single-node anchors may require more communication among

nodes and may necessitate out-of-band methods to interpret certain events (e.g., if a consensus node

submits an anchor of a seemingly incorrect blockchain state).

4 Alternatives and Improvements

4.1 Trusted Hardware

System maintainers could install untamperable hardware security modules (HSMs) [79] that can be

certified by the system auditors. These HSMs could implement the blockchain logic in whole or in

parts; e.g., an HSM could provide consensus logic and associated digital signatures for the blockchain.

The HSMs could be periodically inspected by the auditors and/or provide the auditors with online

updates via encrypted channels that cannot be tampered with by the system maintainers.

One could say that proof of work hardware is a special type of HSM, the operation of which is

transparent to external observers, as proofs of work are impossible to fake and are easy to verify

without compromising security of the system. At the same time, most of operations performed by

ordinary HSMs (e.g., digital signing) rely on trusting the HSM properties (such as the impossibility

to extract a private key from the HSM) that can hardly be verified remotely and independently. In

general, the HSM approach could be seamlessly combined with other accountability means, including

blockchain receipts, anchoring and proof of work.

4.2 Fully Public Blockchain

Instead of making the chain of block headers public (which is proposed in Section 2.4 to decrease

the length of blockchain receipts), the whole blockchain could be made public, thus allowing every

interested partywith sufficient computational resources to act as an independent auditor. The concept

of partial verification nodes [12] is aimed to provide accountability with the moderate amount of

computational resources allocated for each auditing node. A partial verification node verifies a
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comparatively small percentage of transactions (e.g., 1%); in the event incorrect blockchain operation

is discovered, the node broadcasts a fraud proof functioning similar to ones described in Section 2.4.

The mentioned approach is utilized in cryptocurrency blockchains, such as Bitcoin. Solutions

developed by the cryptocurrency community provide confidentiality of transaction amounts and/or

transacting entities [80, 81, 82], obfuscation of relations among clients (hierarchical deterministic

wallets [83], Bitcoin payment protocol [84]), confidential smart contracts [85], etc. We expect for new,

more mature solutions in the area to emerge in the short to medium term. These solutions would

allow to prevent audacity attacks (Section 2.3) that cannot be addressed by blockchain anchoring.

4.3 Blockchain as a Service

Instead of deploying an application-specific private blockchain, some applicationsmay utilize existing

blockchains (whether permissionless or permissioned) as a specialized cloud platform – blockchain as

a service (BaaS); see [47] for a description of a BaaS platform for digital asset management. From the

economical point of view, blockchain as a service may be a more cost-effective and secure solution

for small and medium enterprises compared to the deployment of an application-specific blockchain;

moreover, in the former case, the enterprise could benefit from the network effect, availability of

third-party blockchain applications, etc. On the other hand, BaaS solutions may not be viable because

of domain-specific requirements; e.g., a public registry could hardly be organized on a permissionless

blockchain (at least in the nearest future) because of the legal obligations of the registry maintainer.

The accountability in BaaS is partially relegated to third parties (system maintainers of the BaaS

blockchain). The BaaS maintainers guarantee transaction finality, reliable timestamping, blockchain

uniqueness, etc. If the customer base for the BaaS is diversified, maintainers could be less likely to

perform system-wide attacks on the system for the sake of a single application than in the case the

same application is hosted on a separate blockchain, as the discovery of the attack would have a

negative effect on the system in whole.

Application-specific accountability in BaaS could be achieved with the help of expressive means of

the underlying blockchain and cryptographic primitives such as Merkle trees. For example, solutions

by G. Maxwell [86] and J. Bonneau et al. [87] both provide tools for bitcoin exchanges to prove their

solvency while preserving a sufficient level of confidentiality.

5 Conclusion

Accountability and universal auditing capabilities are strong points of the blockchain design proposed

by Satoshi Nakamoto. The term blockchain is derived from a hash-based linking among transactions,

the main purposes of which are:

• Make blockchain revisions and equivocation detectable and costly (i.e., ensure accountability of

block producers)

• Enable audits by computationally and space-constrained lightweight clients
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Thus, the term blockchain puts an emphasis on accountability, whereas some proposed alternative

terms (e.g., distributed ledger) focus on distribution and sharing of data (for which alone blockchain

technology may not be necessary). In the light of calls for service transparency and accountability,

boosted by computerization and the spread of the Internet, blockchains could provide a necessary

framework to implement these properties.

In theNakamoto’s design, the accountability of systemmaintainers is obtained through economical

mechanisms, meaning that the attack costs could be independently assessed with a reasonable degree

of accuracy. An alternative approach – Byzantine fault-tolerant replication – offers tamper proofness

for a substantial range of attacks by an external computationally bounded adversary, but does not

provide a clear estimate of attack costs, which critically depend on the security of node identification.

Additionally, Byzantine fault tolerance on its own is not effective against attacks perpetrated by the

colluding system maintainers; without a proper setup, such attacks cannot be timely detected by

clients and auditors. The allure of blockchain technology lies in providing protection against these

kinds of attacks and attaining in this way a greater degree of transparency and accountability.

In this paper, we demonstrated how accountability is implicitly present in proposed blockchain

designs that use BFT replication, and how it could be augmented with the help of blockchain receipts

and anchoring (including blockchain anchoring). Blockchain receipts and anchoring provide the

tamper evidence property, i.e., timely detection of attacks on the blockchain system (including attacks

perpetrated by the system maintainers). Anchoring on a PoW blockchain also provides tamper

resistance, i.e., a measurable economic expense required to even attempt an attack on the system.

These security properties, together with tamper proofness against external threats, could justify the

use of blockchains in a variety of security-sensitive applications, including scenarioswith a blockchain

being used as a specialized PaaS.

Blockchain receipts could provide a basic level of accountability and serve as an alternative to

traditional receipts. Using linking schemes inspired by timestamping services and/or publishing the

chain of block headers (which contains no recoverable confidential information about the blockchain

operation) could make blockchain receipts compact and easy to verify. Receipts together with an-

choring could provide strong guarantees for non-repudiation, including the case when a public key

cryptosystem used by the blockchain system is compromised.

Blockchain anchoring does not require substantial expenses from system maintainers and at the

same time provides a substantial degree of resilience against attacks. The Bitcoin Blockchain is the

most cost-effective blockchain for anchoring because of the greatest network hashrate and the use of

ASIC-friendly proof of work. Anchoring could be deployed on a blockchain together with traditional

anchoring on printed media, trusted timestamping and/or hardware security modules in order to

diversify security and accountability of the system.

As an auxiliary accountability service, blockchain anchoring does not constitute a single point

of failure. Even in the extraordinary event that the blockchain with anchors ceases functioning or

undergoes a hostile takeover, the anchored blockchain would continue normal operation, as the event
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would be observable and interpretable in the same way by the system maintainers, auditors and

clients. Thus, blockchain anchoring could be used in applications without sacrificing availability.

Appendix A Accountability in Permissionless Blockchains

The popularity of Bitcoin has given rise to other cryptocurrencies, with various consensus algorithms

and, correspondingly, varying accountability of participants (Table 2). The main three approaches

to consensus in cryptocurrencies are proof of work (PoW), proof of stake (PoS) and the web of trust

(WoT) approach; there are also hybrid consensus models using proof of work and proof of stake.

Accountability properties of PoWwere considered in Section 3.2. First proposed PoS versions, inwhich

every cryptocurrency holder can create blocks with the probability proportional to his balance, suffer

from impaired accountability (so called “nothing at stake” problem). We address the reader to [24, 88]

for the analysis of simple PoS schemes and their comparisonwith PoW. In themore advanced versions

of proof of stake (referred to as deposited-based, or punitive, proof of stake – DPoS), consensus nodes

make security deposits, which are confiscated in the case of incorrect behavior. The consensus weight

of a node is proportional to the amount of the deposit. Deposits address the accountability problem

and make accountability in delegated PoS measurable in terms of the blockchain cryptocurrency (cf.

mining equipment and electricity costs in PoW both measurable in terms of the real-world resources).

Finally, in the WoT approach, each client selects a set of nodes he trusts; thus, accountability is trust-

based and does not differ much from existing financial services and other applications, in which

blockchains could be used.

Table 2: Accountability and a category under the CAP theorem [89] for various kinds of consensus algorithms

used in permissionless blockchains. Availability is understood more loosely than in the general case (see

in text)

Consensus Examples CAP category Accountability

Proof of work Bitcoin, Ethereum

(Ethash), Litecoin

AP Economical through proof of work;

deviations from the protocol make a

maintainer waste real-world resources

Proof of stake

(simple)

Peercoin, Nxt AP Impaired – “nothing at stake”; deviations

from the protocol are easy

Delegated proof

of stake

Tendermint,

Ethereum (Casper)

CP Economical through deposits; deviations

from the protocol make a maintainer lose

in-blockchain currency

Web of trust Ripple, Stellar CP Trust-based

Blockchain utilizing PoW or simple versions of PoS do not fully satisfy Definition 5 of auditable

logs; they allow for blockchain reorganizations, thereby not enjoying atomic consistency. Intuitively,

the consensus algorithm not making any assumptions about the behavior of consensus nodes cannot

be atomically consistent. Indeed, in such systems, it is impossible to discern a network split with the
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case when the substantial portion of consensus nodes has permanently abandoned their duties. Thus,

the best course of action of consensus nodes that perceive a split from the majority of the network is

to continue working, taking for granted the risk that their work may be voided after partition healing.

Therefore, PoW and PoS blockchains fall under the AP (available and partition-tolerant) category

under the CAP theorem, with availability redefined per the realities of permissionless blockchains as

the finite time for a transaction with sufficient fee to be included into a block; if we required for the

network to process all transactions in finite time as per the ordinary definition of availability, it would

be vulnerable to transaction spam. DPoS and WoT consensus algorithms achieve consistency at the

cost of identifying nodes and/or assuming their fault tolerance:

• DPoS algorithms identify nodes to assign them weights according to security deposits. The real-

world identities of consensus nodes may or may not be known; intuitively, stakeholders with

large security deposits in a popular DPoS system would probably have known identities

• In WoT systems, consensus nodes are identified in order to build trust relationships. Intuitively,

the real-world identities of the consensus node owners should be known, as it would be strange

for users to trust the nodes otherwise

Proof of stake and web of trust blockchains are not as attractive as a medium for anchoring as

proof of work blockchains. Indeed, PoS itself suffers from impaired accountability, and WoT gives

an inherently subjective view of the system. DPoS blockchains could potentially be better in this

regard, although long-range attacks for them could be easier than for PoW blockchains [88]; presently

there are no DPoS blockchains that could offer the same level of economic accountability as Bitcoin.

Additionally, neither (D)PoS nor WoT algorithms are secret-free like PoW. Their security depends on

secrets in the form of private keys, which are necessary for identification of accounts in the case of

(D)PoS and identification of trusted nodes in the WoT approach.

Appendix B Cost of Attack on Blockchain Anchoring

Assume an attacker decides to retroactively modify the anchor on a permissionless cryptocurrency

blockchain that utilizes proof of work (e.g., the Bitcoin Blockchain). In order to accomplish this,

the attacker would need to overwrite the blockchain starting from the block containing the targeted

anchor. According to proof-of-work blockchain consensus rules, the attacker would need to produce

an alternative chain of blocks with more cumulative proof of work than that created by honest

maintainers. Furthermore, the attacker would need to keep his version of blockchain secret until

it becomes preferable to the blockchain generated by the honest part of the network. An ordinary

majority attack (e.g., censoring all blocks not generated by the attacker) does not change the blockchain

history, hence it would not accomplish the attacker’s goals.

Note that the attack would have obvious issues:

• Full nodes would retain the version of the blockchain maintained by the honest miners after the

attack. Thus, existing blockchain users (including the users of the anchored blockchain) would
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be able to verify that the attack took place, significantly diminishing its utility for most use cases

(cf. anchoring on printed media, the successful attack on which would necessitate unnoticeably

swapping existing printed issues of the medium). The attack itself would require significant

amount of preparation, further diminishing the chance to accomplish it covertly

• Because the attack would be highly noticeable, the attacker would be unlikely to gain profit from

selling mined cryptocurrency, as its exchange rate would probably significantly drop after the

attack. Hence, it is unlikely that the attack would be supported by rational maintainers on the

target blockchain

Assume that the attack begins at the moment t = 0, and the attacked anchor corresponds to

t = −ta < 0 (i.e., ta is the anchor age). The honest hashrate and the attacker’s hashrate are described

by functions g, h : R → [0,+∞) respectively, with the condition ∀t < 0 h(t) = 0. We further assume

that h and g are both monotonically nondecreasing: ∀t ḣ(t) ≥ 0, ġ(t) ≥ 0.

The initial cumulative difficulty handicap of the attacker’s chain is δ def
=

∫ 0
−ta

g(t) dt. The attack

ends at the moment τ such that the cumulative difficulty of the attacker’s chain reaches that of the

honest network, i.e., ∫ τ

0
h(t) dt = δ +

∫ τ

0
g(t) dt. (1)

The attack costs

J(h, τ) = R+ Ch(τ) +O

∫ τ

0
h(t) dt → min (2)

consist of three factors:

• R, measured in $, are inelastic capital expenses on the production of hashing equipment

• C , measured in $/(GH/s), are elastic capital expenses of developing, producing and deploying a

unit of hashing equipment

• O, measured in $/GH, are operating expenses of maintaining a unit of hashing equipment

Naturally, R, C and O are positive.

Observe that the integral part of (2) can be simplified using (1), resulting in a one-sided optimal

control problem for the control h:

J = R+Oδ + Ch(τ) +O

∫ τ

0
g(t) dt → min

τ,h
s.t. (3)∫ τ

0
h(t) dt = δ +

∫ τ

0
g(t) dt;

h(0) = 0; ∀t ∈ (0, τ) ḣ(t) ≥ 0.

Rather than trying to solve this problem in the generic case (which can be accomplished numerically),

we examine a simple partial case.

Assumption 5. h(t) = h∗ is constant on the interval (0, τ ] (i.e., the attacker starts the attack after an

initial equipment procurement and does not increase the amount of the equipment during the attack).
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The transition to the constant attacker’s hashrate may be justified by the following observation.

Statement 1. The constant attacker’s hashrate h(t) = h∗ is optimal in (3) for any fixed τ .

Proof.

Assumption 5 leads to the constraint (1) simplified as

h∗τ = δ +

∫ τ

0
g(t) dt,

thus yielding

J(h∗, τ) = R+Oδ + Cδ/τ + (O + C/τ)

∫ τ

0
g(t) dt, (4)

which is now dependent only on τ and not on h∗.

As h is nondecreasing,

h(τ) ≡ 1

τ

∫ τ

0
h(τ) dt ≥ 1

τ

∫ τ

0
h(t) dt =

δ

τ
+

1

τ

∫ τ

0
g(t) dt. (5)

Replacing h(τ) in (3) per (5) yields a lower bound estimate J(h, τ) ≥ J(h∗, τ) with h∗ understood as a

constant function. J(h, τ) = J(h∗, τ) holds iff h = h∗. ■

Minimizing J in (4) for τ , we obtain

∂J

∂τ
=

(
O +

C

τ

)
g(τ)− C

τ2

(
δ +

∫ τ

0
g(t) dt

)
= 0. (6)

Statement 2. If g(t) is continuous, Equation (6) has the only solution on the interval τ ∈ (0,+∞).

Proof.

lim
τ→+0

∂J(τ)

∂τ
= Og(0) + lim

τ→+0

(
Cg(0)

τ
− Cδ

τ2

)
= −∞.

As g(t) is a nondecreasing function,

∂J(τ)

∂τ
≥

(
O +

C

τ

)
g(τ)− C

τ2

(
δ +

∫ τ

0
g(τ) dt

)
= Og(τ)− Cδ

τ2
> 0 with τ → +∞.

Hence, ∂J/∂τ has different signs on the ends of the explored interval, and since it is a continuous

function, there is at least one point τ , at which ∂J(τ)/∂τ = 0.

Next, observe that (6) has the same solutions on τ ∈ (0,+∞) as the equation

τ2
∂J

∂τ
≡ Oτ2g(τ) + Cτg(τ)− Cδ − C

∫ τ

0
g(t) dt = 0. (7)

Differentiate the left part of (7) for τ :

∂

∂τ

(
τ2

∂J

∂τ

)
=

(
Oτ2 + Cτ

) ∂g(τ)
∂τ

+ 2Oτg(τ) > 0 ∀τ ≥ 0,

because ∂g/∂τ ≥ 0, and g(τ) > 0. Hence, the left part of (7) monotonically increases meaning that (7)

and (6) may have no more than a single solution. This completes the proof. ■
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Consider the simplest instantiation of the honest hashrate function g(t): constant g(t) = g0 for all

t; in this case, the initial handicap of the attacker’s chain δ = g0ta. Equation (6) is simplified as(
O +

C

τ

)
g0 −

C(δ + g0τ)

τ2
= 0,

from which the optimal attack duration τ∗ =
√

Cδ/Og0, and the optimal expenses

J∗ = R+Oδ + Cg0︸ ︷︷ ︸
J0

+2
√

Oδ · Cg0︸ ︷︷ ︸
Jconst

.

A part of expenses J0 can be viewed as the costs spent on anchor security by the honest miners

by the time t = 0, and Jconst is the additional penalty. A much-desired property is that Jconst can be

comparable to J0, i.e., costs spent on securing the anchor are significantly less than the costs to attack

it (Fig. 5).
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Figure 5: Costs to attack anchoring on a blockchain with the static honest hashrate g0 depending on the anchor

age ta. It is assumed that the cost factors in (2)R = Og0 · 1 year = Cg0/4, which is by our estimations close

to the current distribution of the factors for the Bitcoin Blockchain.
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