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Abstract — Zero-knowledge proofs are an 
emerging cryptographic technology that have 
many potential applications for blockchains. 
Exonum is an extensible open-source framework 
for creating blockchain applications. In this 
article, we describe how zero-knowledge proofs, 
specifically bulletproofs, can be applied to build a 
privacy-focused service using Exonum. The token 
logic is implemented as a platform service and is 
a proof of concept.

I. INTRODUCTION
Zero-knowledge proof/argument (ZKP) [1], [2] 
is an emerging cryptographic technology that 
promises to bring us closer to the zenith of 
blockchain: providing data privacy for blockchain 
users without sacrificing auditability.

Potential applications for zero-knowledge proofs 
include, but are not limited to: inter-bank transfer 
systems [3], privacy-focused management of 
digital assets [4], know your customer [5], self-
sovereign identity [6], voting [7].

Another application for zero-knowledge proofs is 
helping blockchains scale [8]. ZKPs allow for the 
“compressing” of computations for blockchain 
transactions without sacrificing security. In this 
article, we describe how zero-knowledge proofs 
(specifically, bulletproofs [9]) can be applied to 
build a privacy-focused service using Bitfury’s 
Exonum platform (https://exonum.com/).

II. SITUATIONAL ANALYSIS
It is possible to achieve some level of data privacy 
in blockchain apps using the “walled garden” 
approach, where the data is hidden because 
access to it is restricted with the help of firewalls, 
role-based access control, moats and other 
perimeter security measures. Sensitive data in 
the blockchain may be encrypted (perhaps, with 
a public-key encryption scheme, with the relevant 
public keys managed by the same blockchain) 
and/or stored outside of the blockchain (in this 
case, the blockchain stores only hash fingerprints 
of the data). This approach is used in many 
permissioned distributed ledger frameworks [10], 
[11], [12], [13], [14].

However, the disadvantages of the “walled 
garden” approach are becoming increasingly 

apparent. Namely, the approach is antithetical 
to one of the main selling points of blockchain–
auditability. If the data on the blockchain cannot 
be audited by consulting smart contract logic, 
the blockchain becomes a glorified linked 
timestamping service [15]. The fact that there is 
some data on the blockchain no longer means 
that this data is valid as per smart contract rules. 
The second major disadvantage to the walled 
garden approach is that it does not scale. R3’s 
CTO Richard Brown, for example, aptly compared 
the privacy model of their solution to Slack 
channels — it is difficult to securely add or remove 
participants to/from the garden, even more so 
when there are no prior expectations as to the 
number and identities of these participants [16].

This is where zero-knowledge can be valuable. By 
design, zero-knowledge proofs and arguments 
convincingly prove a statement about private 
data without revealing anything about the data 
except the statement being proved. It is easy to 
make zero-knowledge proofs universally verifiable, 
without sacrificing any privacy! This feature is 
exactly what is needed to build a system that is 
both privacy-preserving and auditable at the same 
time.

III. OUR RESEARCH
To demonstrate the use of zero-knowledge 
proofs, we are going to build a cryptocurrency 
service with similar functionality to the tutorial 
services in the Exonum [17] documentation 
(https://exonum.com/doc/get-started/create-
service/). The service makes it possible to 
register users and wallets (providing an initial 
token balance as a reward) and transfer tokens 
among registered parties. All transactions are 
authenticated with the help of a digital signature 
cryptosystem, Ed25519, which is built into 
Exonum services. We do not hide identities of 
transacting parties (i.e., their public keys), but we 
hide the number of tokens being transacted and 
the balance of each account in the system. We 
also discuss how we could improve the service 
to hide the transacting entities at the end of the 
article.

The service is fully open-sourced and can be 
accessed on Github https://github.com/exonum/
private-currency.
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IV. CRYPTOGRAPHY BACKGROUND
In order to understand how the service works, 
we first need to introduce ourselves to the 
core cryptographic primitive underpinning 
bulletproofs — a concept called Pedersen 
commitments [18]. A cryptographic commitment 
scheme is somewhat like a hash function: 
someone inputs secret data (the opening) and 
gets the output that is unrecognizably scrambled 
(the commitment). One can then reveal the 
opening to prove that the committed value 
corresponds to it.

The difference with hash functions is that besides 
being binding (no one can devise two different 
openings producing the same commitment), 
a commitment scheme is also expected to be 
hiding (it is impossible to reverse the scheme 
and produce an opening given a commitment). 
A hash function is hiding if its input is uniformly 
distributed about the entire input space, but this 
assumption most frequently does not hold for 
commitments (indeed, it must be possible to 
commit to a value from a very small set, such as 
Boolean). As such, the opening contains, besides 
the payload, the blinding factor which makes it 
(at least statistically) improbable to guess the 
payload given the commitment.

The Pedersen commitment scheme uses a prime-
order group, in which the discrete logarithm 
problem (DLP) is believed to be hard [2], together 
with two generators, G and H. G and H must be 
chosen in such a way that the discrete log relation 
among them is unknown; in other words, no one 
knows k such that H = kG. The opening is a pair 
(x, r), where x is the committed value and r is the 
blinding factor; both are group scalars (essentially, 
integers with “overflow” akin to finite integer 
types used in most programming languages). The 
commitment is computed as Comm(x; r) = xG + rH. 
It can be proven that if DLP in the group is hard, 
the Pedersen commitment is computationally 
binding and perfectly hiding.

The crucial property for Pedersen commitments is 
that they are additive: the sum (or difference) of 
two commitments is a commitment to the sum (or 
difference) of committed values. Indeed,

C1 = x1G + r1H;  C2 = x2G + r2H →

C1 + C2 = (x1 + x2)G + (r1 + r2)H =

	 = Comm(x1 + x2; r1 + r2).

V. BUILDING A SERVICE
With our knowledge, we can securely hide account 
balances and transfer amounts with the help of 
Pedersen commitments. Using range proofs, we 
can prove/verify that a transfer is correct:

•	 The transferred amount is positive
•	 The sender has enough balance in his account.

For the first proof, we take the commitment to 
the transfer amount, Ca (it is directly present in 
the transfer transaction), and verify that the value 
committed in Ca – Comm(1; 0) lies in the range 
[0, M). Indeed, this is equivalent to proving that 
Ca corresponds to a value in the range [1, M]. The 
sender can produce this proof, as he knows the 
transferred amount a.

For the second proof, we need to take the 
commitment for the sender’s current balance, Cs, 
and verify that the value committed in Cs – Ca lies 
in the range [0, M). Again, the sender can produce 
this proof as he knows the opening to both Cs and 
Ca.

To apply the transfer to the blockchain state, 
we subtract amount commitment Ca from the 
sender’s balance commitment (as we have 
verified, it cannot lead to a negative balance, or 
to the increase of the sender’s balance), and then 
add Ca to the receiver’s balance commitment.

VI. KEY DETAILS
It is important to note that there are a few 
conditions that can make the implemented 
service more complex.

The receiver of a transfer must find out the 
opening to Ca from somewhere; otherwise, he 
ceases to know the opening to his balance and 
can no longer do anything with his wallet. The 
opening is not present in the plaintext of the 
transfer transaction (which is the entire point). We 
could assume that the receiver reliably obtains 
the opening via an off-chain channel (for example, 
sent by the sender via Telegram), but that is not 
an illustrative scenario. So instead, we encrypt the 
opening using two-party public-key encryption 
based on Diffie-Hellman key exchange [19]. 
For the added benefit, Curve25519 keys [20] 
required for the box routine can be converted 
from Ed25519 keys, so we may continue to use a 
single keypair for each user instead of introducing 
separate encryption keys.

Once we introduce encryption, we can no longer 
apply the transfer atomically. Indeed, the sender 
can maliciously or unintentionally provide garbage 
instead of the opening encryption, and the 
blockchain logic won’t be able to tell that this is 
the case. Thus, we request the receiver to explicitly 
accept the transfer via a separate transaction.

Before a transfer is accepted, it modifies the 
sender’s balance commitment (otherwise, we 
would allow double-spending!), but not the 
receiver’s one.
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Once the acceptance transaction is confirmed by 
the blockchain network, the receiver’s balance is 
updated, and the transfer is complete.

To prevent deadlocks, a transfer specifies a 
time-lock delay (in relative blockchain height, 
a la Bitcoin’s CSV) for the receiver to signal 
acceptance. If the time lock is expired, the 
transfer is automatically refunded to the sender 
(Exonum allows this via Service::beforeCommit() 
hook).

Another issue is more intricate. In order to 
produce the proof of a sufficient balance, the 
sender needs to know his current balance, which 
may not always be the case. A stray acceptance 
transaction or refund may increase the sender’s 
balance unwittingly to him/her; in this case, the 
transfer will fail verification, and the sender will be 
reasonably frustrated. To alleviate this problem, 
we allow transfers to reference what the sender 
thinks is his current wallet state (more precisely, 
the reference takes form of the number of events 
changing account balance — transfers and 
refunds). When checking the proof of a sufficient 
balance, we use the referenced state to obtain the 
sender’s balance commitment. Additionally, we 
check that no outgoing transfers have occurred 
since the referenced state. If this is the case, we 
can be certain that if we subtract the transfer 
amount from the sender’s current balance, we 
will end up with a non-negative value. Indeed, the 
events in the account history after the reference 
point (incoming transfers and refunds) can only 
increase the balance!

With reference points in place, the sender is 
still somewhat constrained; he must have no 
pending transfers when creating a new transfer. 
Still, this restriction is much less limiting than the 
requirement to know one’s account state at the 
moment of the transfer; fundamentally, we make 
the sender dependent on what he did previously, 
but not on others’ actions.

VII. IMPLEMENTATION
We use a bulletproofs library written in pure Rust 
(https://doc.dalek.rs/bulletproofs/), which has 
recently reached pre-release stage. Since the 
Exonum platform is written in Rust, it integrates 
with the library seamlessly. For added benefit (and 
unlike the version of bulletproofs described in the 
original whitepaper which is being developed in C 
and uses Bitcoin’s secp256k1 elliptic curve), the 
library we use is based upon Curve25519, which is 
already used in Exonum as the main component of 
the Ed25519 [21] digital signature cryptosystem.

Implementing the service based on the above 
description is quite straightforward. The most 
difficult part was constructing Merkle proofs 
that authenticate information returned to the 
user so that he does not have to blindly trust the 
Exonum nodes he communicates with. Improving 
experience of service developers in this regard is 
one of the major goals of the Exonum 1.0 release.

VIII. NEXT STEPS
The service we have built does not hide the 
identities of the sender and the receiver of 
transfers, which is a major limitation for real-world 
applications. Fortunately, there are ways to solve 
this problem.

The generic technique used in zCash [22] is based 
on creating a Merkle tree of the system state. 
For example, zCash builds the note commitment 
tree, which is roughly equivalent to ever created 
transaction outputs in Bitcoin. Zero-knowledge 
proofs then encompass authentication paths (aka 
Merkle branches) in this tree, reveals something 
about an element of the tree without revealing 
which element is referred to. The downside of this 
approach is that cryptographic hash functions 
used to build Merkle trees are difficult to transfer 
into the zero-knowledge realm; the resulting 
proofs become computationally expensive — 
a single proof can take seconds or even minutes 

Fig. 1. Record of transaction in blockchain

https://doc.dalek.rs/bulletproofs
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Fig. 2. Receiver verifies and accepts the transfer

Fig. 3. Transfer is verified and executed by blockchain network

Fig. 4. Acceptance is verified and executed by blockchain network
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to create. Searching for more “ZKP-friendly” 
cryptographic hash functions is an area of active 
research.

If we admit additional constraints, there may be an 
easier solution. For example, a recent paper by Narula 
et al. [3] describes a system with a limited, a priori 
known number of participants, which can transact 
among themselves without revealing participants or 
transferred amounts for any transaction.

On a more prosaic note, there are probably many 
technical improvements that the developed 
service can enjoy: more test coverage, separation 
of signing and encryption keys, benchmarking, 
etc. A major improvement to the service UX would 
be enabling deterministic ordering of transactions 
originating from the same user, which we plan to 
solve not long after releasing Exonum 1.0.

IX. CONCLUSION
We have described how to construct an account-
based cryptotoken with strong privacy enabled by 
zero-knowledge proofs (specifically, bulletproofs). 
The token logic was implemented as an Exonum 
service. Although currently the service is just a 
proof of concept, it showcases how the Exonum 
platform can be used to build atop complex 
cryptographic primitives with very low overhead 
imposed by the execution environment.
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