
1

Abstract — Zero-knowledge proofs are an
emerging cryptographic technology that have
many potential applications for blockchains.
Exonum is an extensible open-source framework
for creating blockchain applications. In this
article, we describe how zero-knowledge proofs,
specifically bulletproofs, can be applied to build a
privacy-focused service using Exonum. The token
logic is implemented as a platform service and is
a proof of concept.

I. INTRODUCTION
Zero-knowledge proof/argument (ZKP) [1], [2]
is an emerging cryptographic technology that
promises to bring us closer to the zenith of
blockchain: providing data privacy for blockchain
users without sacrificing auditability.

Potential applications for zero-knowledge proofs
include, but are not limited to: inter-bank transfer
systems [3], privacy-focused management of
digital assets [4], know your customer [5], self-
sovereign identity [6], voting [7].

Another application for zero-knowledge proofs is
helping blockchains scale [8]. ZKPs allow for the
“compressing” of computations for blockchain
transactions without sacrificing security. In this
article, we describe how zero-knowledge proofs
(specifically, bulletproofs [9]) can be applied to
build a privacy-focused service using Bitfury’s
Exonum platform (https://exonum.com/).

II. SITUATIONAL ANALYSIS
It is possible to achieve some level of data privacy
in blockchain apps using the “walled garden”
approach, where the data is hidden because
access to it is restricted with the help of firewalls,
role-based access control, moats and other
perimeter security measures. Sensitive data in
the blockchain may be encrypted (perhaps, with
a public-key encryption scheme, with the relevant
public keys managed by the same blockchain)
and/or stored outside of the blockchain (in this
case, the blockchain stores only hash fingerprints
of the data). This approach is used in many
permissioned distributed ledger frameworks [10],
[11], [12], [13], [14].

However, the disadvantages of the “walled
garden” approach are becoming increasingly

apparent. Namely, the approach is antithetical
to one of the main selling points of blockchain–
auditability. If the data on the blockchain cannot
be audited by consulting smart contract logic,
the blockchain becomes a glorified linked
timestamping service [15]. The fact that there is
some data on the blockchain no longer means
that this data is valid as per smart contract rules.
The second major disadvantage to the walled
garden approach is that it does not scale. R3’s
CTO Richard Brown, for example, aptly compared
the privacy model of their solution to Slack
channels — it is difficult to securely add or remove
participants to/from the garden, even more so
when there are no prior expectations as to the
number and identities of these participants [16].

This is where zero-knowledge can be valuable. By
design, zero-knowledge proofs and arguments
convincingly prove a statement about private
data without revealing anything about the data
except the statement being proved. It is easy to
make zero-knowledge proofs universally verifiable,
without sacrificing any privacy! This feature is
exactly what is needed to build a system that is
both privacy-preserving and auditable at the same
time.

III. OUR RESEARCH
To demonstrate the use of zero-knowledge
proofs, we are going to build a cryptocurrency
service with similar functionality to the tutorial
services in the Exonum [17] documentation
(https://exonum.com/doc/get-started/create-
service/). The service makes it possible to
register users and wallets (providing an initial
token balance as a reward) and transfer tokens
among registered parties. All transactions are
authenticated with the help of a digital signature
cryptosystem, Ed25519, which is built into
Exonum services. We do not hide identities of
transacting parties (i.e., their public keys), but we
hide the number of tokens being transacted and
the balance of each account in the system. We
also discuss how we could improve the service
to hide the transacting entities at the end of the
article.

The service is fully open-sourced and can be
accessed on Github https://github.com/exonum/
private-currency.

Building a Private Currency Service
Using Exonum
Darya Korepanova, Maria Nosyk, Alex Ostrovsky and Yury Yanovich

https://exonum.com/
https://exonum.com/doc/get-started/create-service/
https://exonum.com/doc/get-started/create-service/
https://github.com/exonum/private-currency
https://github.com/exonum/private-currency

2

IV. CRYPTOGRAPHY BACKGROUND
In order to understand how the service works,
we first need to introduce ourselves to the
core cryptographic primitive underpinning
bulletproofs — a concept called Pedersen
commitments [18]. A cryptographic commitment
scheme is somewhat like a hash function:
someone inputs secret data (the opening) and
gets the output that is unrecognizably scrambled
(the commitment). One can then reveal the
opening to prove that the committed value
corresponds to it.

The difference with hash functions is that besides
being binding (no one can devise two different
openings producing the same commitment),
a commitment scheme is also expected to be
hiding (it is impossible to reverse the scheme
and produce an opening given a commitment).
A hash function is hiding if its input is uniformly
distributed about the entire input space, but this
assumption most frequently does not hold for
commitments (indeed, it must be possible to
commit to a value from a very small set, such as
Boolean). As such, the opening contains, besides
the payload, the blinding factor which makes it
(at least statistically) improbable to guess the
payload given the commitment.

The Pedersen commitment scheme uses a prime-
order group, in which the discrete logarithm
problem (DLP) is believed to be hard [2], together
with two generators, G and H. G and H must be
chosen in such a way that the discrete log relation
among them is unknown; in other words, no one
knows k such that H = kG. The opening is a pair
(x, r), where x is the committed value and r is the
blinding factor; both are group scalars (essentially,
integers with “overflow” akin to finite integer
types used in most programming languages). The
commitment is computed as Comm(x; r) = xG + rH.
It can be proven that if DLP in the group is hard,
the Pedersen commitment is computationally
binding and perfectly hiding.

The crucial property for Pedersen commitments is
that they are additive: the sum (or difference) of
two commitments is a commitment to the sum (or
difference) of committed values. Indeed,

C1 = x1G + r1H; C2 = x2G + r2H →

C1 + C2 = (x1 + x2)G + (r1 + r2)H =

	 = Comm(x1 + x2; r1 + r2).

V. BUILDING A SERVICE
With our knowledge, we can securely hide account
balances and transfer amounts with the help of
Pedersen commitments. Using range proofs, we
can prove/verify that a transfer is correct:

•	 The transferred amount is positive
•	 The sender has enough balance in his account.

For the first proof, we take the commitment to
the transfer amount, Ca (it is directly present in
the transfer transaction), and verify that the value
committed in Ca – Comm(1; 0) lies in the range
[0, M). Indeed, this is equivalent to proving that
Ca corresponds to a value in the range [1, M]. The
sender can produce this proof, as he knows the
transferred amount a.

For the second proof, we need to take the
commitment for the sender’s current balance, Cs,
and verify that the value committed in Cs – Ca lies
in the range [0, M). Again, the sender can produce
this proof as he knows the opening to both Cs and
Ca.

To apply the transfer to the blockchain state,
we subtract amount commitment Ca from the
sender’s balance commitment (as we have
verified, it cannot lead to a negative balance, or
to the increase of the sender’s balance), and then
add Ca to the receiver’s balance commitment.

VI. KEY DETAILS
It is important to note that there are a few
conditions that can make the implemented
service more complex.

The receiver of a transfer must find out the
opening to Ca from somewhere; otherwise, he
ceases to know the opening to his balance and
can no longer do anything with his wallet. The
opening is not present in the plaintext of the
transfer transaction (which is the entire point). We
could assume that the receiver reliably obtains
the opening via an off-chain channel (for example,
sent by the sender via Telegram), but that is not
an illustrative scenario. So instead, we encrypt the
opening using two-party public-key encryption
based on Diffie-Hellman key exchange [19].
For the added benefit, Curve25519 keys [20]
required for the box routine can be converted
from Ed25519 keys, so we may continue to use a
single keypair for each user instead of introducing
separate encryption keys.

Once we introduce encryption, we can no longer
apply the transfer atomically. Indeed, the sender
can maliciously or unintentionally provide garbage
instead of the opening encryption, and the
blockchain logic won’t be able to tell that this is
the case. Thus, we request the receiver to explicitly
accept the transfer via a separate transaction.

Before a transfer is accepted, it modifies the
sender’s balance commitment (otherwise, we
would allow double-spending!), but not the
receiver’s one.

3

Once the acceptance transaction is confirmed by
the blockchain network, the receiver’s balance is
updated, and the transfer is complete.

To prevent deadlocks, a transfer specifies a
time-lock delay (in relative blockchain height,
a la Bitcoin’s CSV) for the receiver to signal
acceptance. If the time lock is expired, the
transfer is automatically refunded to the sender
(Exonum allows this via Service::beforeCommit()
hook).

Another issue is more intricate. In order to
produce the proof of a sufficient balance, the
sender needs to know his current balance, which
may not always be the case. A stray acceptance
transaction or refund may increase the sender’s
balance unwittingly to him/her; in this case, the
transfer will fail verification, and the sender will be
reasonably frustrated. To alleviate this problem,
we allow transfers to reference what the sender
thinks is his current wallet state (more precisely,
the reference takes form of the number of events
changing account balance — transfers and
refunds). When checking the proof of a sufficient
balance, we use the referenced state to obtain the
sender’s balance commitment. Additionally, we
check that no outgoing transfers have occurred
since the referenced state. If this is the case, we
can be certain that if we subtract the transfer
amount from the sender’s current balance, we
will end up with a non-negative value. Indeed, the
events in the account history after the reference
point (incoming transfers and refunds) can only
increase the balance!

With reference points in place, the sender is
still somewhat constrained; he must have no
pending transfers when creating a new transfer.
Still, this restriction is much less limiting than the
requirement to know one’s account state at the
moment of the transfer; fundamentally, we make
the sender dependent on what he did previously,
but not on others’ actions.

VII. IMPLEMENTATION
We use a bulletproofs library written in pure Rust
(https://doc.dalek.rs/bulletproofs/), which has
recently reached pre-release stage. Since the
Exonum platform is written in Rust, it integrates
with the library seamlessly. For added benefit (and
unlike the version of bulletproofs described in the
original whitepaper which is being developed in C
and uses Bitcoin’s secp256k1 elliptic curve), the
library we use is based upon Curve25519, which is
already used in Exonum as the main component of
the Ed25519 [21] digital signature cryptosystem.

Implementing the service based on the above
description is quite straightforward. The most
difficult part was constructing Merkle proofs
that authenticate information returned to the
user so that he does not have to blindly trust the
Exonum nodes he communicates with. Improving
experience of service developers in this regard is
one of the major goals of the Exonum 1.0 release.

VIII. NEXT STEPS
The service we have built does not hide the
identities of the sender and the receiver of
transfers, which is a major limitation for real-world
applications. Fortunately, there are ways to solve
this problem.

The generic technique used in zCash [22] is based
on creating a Merkle tree of the system state.
For example, zCash builds the note commitment
tree, which is roughly equivalent to ever created
transaction outputs in Bitcoin. Zero-knowledge
proofs then encompass authentication paths (aka
Merkle branches) in this tree, reveals something
about an element of the tree without revealing
which element is referred to. The downside of this
approach is that cryptographic hash functions
used to build Merkle trees are difficult to transfer
into the zero-knowledge realm; the resulting
proofs become computationally expensive —
a single proof can take seconds or even minutes

Fig. 1. Record of transaction in blockchain

https://doc.dalek.rs/bulletproofs

4

Fig. 2. Receiver verifies and accepts the transfer

Fig. 3. Transfer is verified and executed by blockchain network

Fig. 4. Acceptance is verified and executed by blockchain network

5

to create. Searching for more “ZKP-friendly”
cryptographic hash functions is an area of active
research.

If we admit additional constraints, there may be an
easier solution. For example, a recent paper by Narula
et al. [3] describes a system with a limited, a priori
known number of participants, which can transact
among themselves without revealing participants or
transferred amounts for any transaction.

On a more prosaic note, there are probably many
technical improvements that the developed
service can enjoy: more test coverage, separation
of signing and encryption keys, benchmarking,
etc. A major improvement to the service UX would
be enabling deterministic ordering of transactions
originating from the same user, which we plan to
solve not long after releasing Exonum 1.0.

IX. CONCLUSION
We have described how to construct an account-
based cryptotoken with strong privacy enabled by
zero-knowledge proofs (specifically, bulletproofs).
The token logic was implemented as an Exonum
service. Although currently the service is just a
proof of concept, it showcases how the Exonum
platform can be used to build atop complex
cryptographic primitives with very low overhead
imposed by the execution environment.

References

	 [1]	S. Goldwasser, S. Micali, and C. Rackoff,
“The Knowledge Complexity of Interactive
Proof Systems”, SIAM Journal on Computing,
vol. 18, No. 1, pp. 186–208, 2 1989.

	 [2]	A. Menezes, P. van Oorschot, and
S. Vanstone, Handbook of Applied
Cryptography, ser. Discrete Mathematics and
Its Applications. CRC Press, 10 1996.

	 [3]	N. Narula, W. Vasquez, and M. Virza,
“zkLedger: Privacy-Preserving Auditing for
Distributed Ledgers”, in NSDI’18. USENIX,
2018, pp. 65–80. [Online]. Available:
https://www.usenix.org/conference/nsdi18/
presentation/narula.

	 [4]	JPMorgan and Zcash, “ZSL Proof of
Concept”, 2018. [Online]. Available:
https://github.com/jpmorganchase/quorum/
wiki/ZSL.

	 [5]	 I. Allison, “ING Bank Launches Zero-
Knowledge Tech for Blockchain
Privacy”, 2018. [Online]. Available:
https://www.coindesk.com/ing-bank-
launches-simplified-zero-knowledge-proofs-
for-blockchain-privacy.

	 [6]	K. Rannenberg, J. Camenisch, and
A. Sabouri, Eds., Attribute-based Credentials
for Trust. Cham: Springer International
Publishing, 2015.

	 [7]	A. Chekanov, T. Knowles, U. Sauer,
M. Rexestrand, C. Calderon, A. Wyss,
S. Lindsay, and G. Guerin, “General Meeting
Proxy Voting On Distributed Ledger”,
Tech. Rep., 2017. [Online]. Available:
https://www.six-group.com/swiss-sptc/dam/
downloads/swiss-sptc/meeting-minutes/
sptc-protokoll-40-csd-dlt-working-group.pdf.

	 [8]	V. Buterin, “On-chain scaling to
potentially ~500 tx/sec through mass
tx validation”, 2018. [Online]. Available:
https://ethresear.ch/t/on-chain-scaling-to-
potentially-500-tx-sec-through-mass-tx-
validation/3477.

	 [9]	B. Bunz, J. Bootle, D. Boneh, A. Poelstra,
P. Wuille, and G. Maxwell, “Bulletproofs: Short
Proofs for Confidential Transactions and
More”, in 2018 IEEE Symposium on Security
and Privacy (SP), vol. 2018 May. IEEE,
5 2018, pp. 315–334.

	[10]	Bitfury Group and J. Garzik, “Public versus
Private Blockchains. Part 1: Permissioned
Blockchains”, bitfury.com, pp. 1–23, 2015.
[Online]. Available: http://bitfury.com/
content/5-white-papers-research/public-vs-
private-pt1-1.pdf.

	[11]	C. Walsh, P. OReilly, R. Gleasure, J. Feller,
S. Li and J. Cristoforo, “New kid on the
block: a strategic archetypes approach to
understanding the Blockchain”, ICIS 2016
Proceedings, pp. 1–12, 12 2016. [Online].
Available: https://aisel.aisnet.org/icis2016/
Crowdsourcing/Presentations/6.

	[12]	Bitfury Group, “On Blockchain Auditability,”
bitfury.com, pp. 1–40, 2016.

	[13]	C. Cachin, “Architecture of the Hyperledger
Blockchain Fabric”, IBM Research, vol. July,
2016.

	[14]	E. Androulaki, Y. Manevich, S. Muralidharan,
C. Murthy, B. Nguyen, M. Sethi, G. Singh,
K. Smith, A. Sorniotti, C. Stathakopoulou,
M. Vukolič, A. Barger, S. W. Cocco, J. Yellick,
V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, and
G. Laventman, “Hyperledger fabric”, in
Proceedings of the Thirteenth EuroSys
Conference on EuroSys 2018. New York,
New York, USA: ACM Press, 2018, pp. 1–15.
[Online]. Available: https://arxiv.org/
pdf/1801.10228.pdf, http://arxiv.org/
abs/1801.10228, http://dl.acm.org/citation.
cfm?doid=3190508.3190538.

https://www.usenix.org/conference/nsdi18/presentation/narula
https://www.usenix.org/conference/nsdi18/presentation/narula
https://github.com/jpmorganchase/quorum/wiki/ZSL
https://github.com/jpmorganchase/quorum/wiki/ZSL
https://www.coindesk.com/ing-bank-launches-simplified-zero-knowledge-proofs-for-blockchain-privacy
https://www.coindesk.com/ing-bank-launches-simplified-zero-knowledge-proofs-for-blockchain-privacy
https://www.coindesk.com/ing-bank-launches-simplified-zero-knowledge-proofs-for-blockchain-privacy
https://www.six-group.com/swiss-sptc/dam/downloads/swiss-sptc/meeting-minutes/sptc-protokoll-40-csd-dlt-working-group.pdf
https://www.six-group.com/swiss-sptc/dam/downloads/swiss-sptc/meeting-minutes/sptc-protokoll-40-csd-dlt-working-group.pdf
https://www.six-group.com/swiss-sptc/dam/downloads/swiss-sptc/meeting-minutes/sptc-protokoll-40-csd-dlt-working-group.pdf
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
http://bitfury.com/content/5-white-papers-research/public-vs-private-pt1-1.pdf
http://bitfury.com/content/5-white-papers-research/public-vs-private-pt1-1.pdf
http://bitfury.com/content/5-white-papers-research/public-vs-private-pt1-1.pdf
https://aisel.aisnet.org/icis2016/Crowdsourcing/Presentations/6
https://aisel.aisnet.org/icis2016/Crowdsourcing/Presentations/6
https://arxiv.org/pdf/1801.10228.pdf
https://arxiv.org/pdf/1801.10228.pdf
http://arxiv.org/abs/1801.10228
http://arxiv.org/abs/1801.10228
http://dl.acm.org/citation.cfm?doid=3190508.3190538
http://dl.acm.org/citation.cfm?doid=3190508.3190538

6

	[15]	S. Haber and W. S. Stornetta, “How to Time-
Stamp a Digital Document”, in Advances in
Cryptology-CRYPT0 90. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1990,
pp. 437–455.

	[16]	R. G. Brown, “What Slack Can Teach
Us About Privacy In Enterprise
Blockchains”, 2017. [Online]. Available:
https://gendal.me/2017/07/20/what-slack-
can-teach-us-about-privacy-in-enterprise-
blockchains/.

	[17]	Y. Yanovich, I. Ivashchenko, A. Ostrovsky,
A. Shevchenko and A. Sidorov, “Exonum:
Byzantine fault tolerant protocol for
blockchains”, bitfury.com, pp. 1–36, 2018.

	[18]	 T. P. Pedersen, “Non-Interactive and
Information-Theoretic Secure Verifiable
Secret Sharing”, in Advances in Cryptology
CRYPTO 91. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1991, pp. 129–140.

	[19]	W. Diffie and M. Hellman, “New directions
in cryptography”, IEEE Transactions
on Information Theory, vol. 22, No. 6,
pp. 644–654, 11 1976. [Online].
Available: http://ieeexplore.ieee.org/
document/1055638/.

	[20]	D. J. Bernstein, “Curve25519: New Diffie-
Hellman Speed Records”, in Lecture Notes
in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). Springer,
Berlin, Heidelberg, 2006, vol. 3958 LNCS,
pp. 207–228.

	[21]	D. J. Bernstein, N. Duif, T. Lange, P. Schwabe,
and B.-Y. Yang, “High-speed high-security
signatures,” Journal of Cryptographic
Engineering, vol. 2, No. 2, pp. 77–89,
9 2012.

	[22]	E. Ben-Sasson, A. Chiesa, C. Garman,
M. Green, I. Miers, E. Tromer, M. Virza,
E. B. Sasson, A. Chiesa, C. Garman, M. Green,
I. Miers, E. Tromer and M. Virza, “Zerocash:
Practical Decentralized Anonymous E-Cash
from Bitcoin”, in Proceedings of the 2014
IEEE Symposium on Security and Privacy.
IEEE, 5 2014, pp. 459–474.

https://gendal.me/2017/07/20/what-slack-can-teach-us-about-privacy-in-enterprise-blockchains/
https://gendal.me/2017/07/20/what-slack-can-teach-us-about-privacy-in-enterprise-blockchains/
https://gendal.me/2017/07/20/what-slack-can-teach-us-about-privacy-in-enterprise-blockchains/
http://ieeexplore.ieee.org/document/1055638/
http://ieeexplore.ieee.org/document/1055638/

